Our understanding of the pathogenesis of diabetes, obesity and other metabolic disorders has benefited greatly from the use of dietary interventions and gene targeting methodology in mice to elucidate molecular mechanisms. However, such efforts are often hampered by a lack of facilities or expertise for metabolic phenotyping. The Mouse Phenotyping, Physiology and Metabolism Core provides investigators of the Penn Diabetes and Endocrinology Research Center (DRC) with access to state-of-the-art, timely and cost-effective resources for performing metabolic studies in mice. The core offers consultation and assistance with experimental design, and an expanding list of services including Comprehensive Laboratory Animal Monitoring System (CLAMS) that can simultaneously record energy expenditure, locomotor activity, eating and drinking, glucose and insulin clamp studies (including radioactive tracers for determining hepatic glucose output and uptake into other tissues), measurement of body composition using dual emission x-ray absorptiometry (DEXA) and nuclear magnetic resonance spectroscopy, thermal imaging, exercise capacity, and a variety of standard metabolic assays. In addition to the many existing services that have been critical to the productivity of DRC investigators, we are excited to be providing new services aimed at phenotyping in variably controlled conditions of ambient temperature and light, as well as facilitating metabolic flux studies through the development of ?cold clamp? techniques for delivery of isotope-labeled metabolites while controlling glucose and insulin levels. Studies in the core are performed by two research specialists and a technical director under the leadership of Dr. Joseph Baur and coordinated with other core laboratories including the Biomarkers and Metabolomics cores. These efforts allow DRC investigators to rapidly translate ideas from the bench to mice as the first critical steps toward new therapeutic approaches for the multitude of patients suffering form diabetes and related disorders.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK019525-44
Application #
9918897
Study Section
Special Emphasis Panel (ZDK1)
Project Start
Project End
Budget Start
2020-04-01
Budget End
2021-03-31
Support Year
44
Fiscal Year
2020
Total Cost
Indirect Cost
Name
University of Pennsylvania
Department
Type
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Pickett-Blakely, Octavia; Young, Kimberly; Carr, Rotonya M (2018) Micronutrients in Nonalcoholic Fatty Liver Disease Pathogenesis. Cell Mol Gastroenterol Hepatol 6:451-462
Kameswaran, Vasumathi; Golson, Maria L; Ramos-Rodríguez, Mireia et al. (2018) The Dysregulation of the DLK1-MEG3 Locus in Islets From Patients With Type 2 Diabetes Is Mimicked by Targeted Epimutation of Its Promoter With TALE-DNMT Constructs. Diabetes 67:1807-1815
Huang, Chen; Walker, Emily M; Dadi, Prasanna K et al. (2018) Synaptotagmin 4 Regulates Pancreatic ? Cell Maturation by Modulating the Ca2+ Sensitivity of Insulin Secretion Vesicles. Dev Cell 45:347-361.e5
Moreira, Leticia; Bakir, Basil; Chatterji, Priya et al. (2018) Pancreas 3D Organoids: Current and Future Aspects as a Research Platform for Personalized Medicine in Pancreatic Cancer. Cell Mol Gastroenterol Hepatol 5:289-298
Pei, Liming; Wallace, Douglas C (2018) Mitochondrial Etiology of Neuropsychiatric Disorders. Biol Psychiatry 83:722-730
Brown, Justin C; Rickels, Michael R; Troxel, Andrea B et al. (2018) Dose-response effects of exercise on insulin among colon cancer survivors. Endocr Relat Cancer 25:11-19
Rickels, M R; Markmann, E; Naji, A (2018) Successful pregnancies after islet transplantation for type 1 diabetes. Am J Transplant :
Friedman, Elliot S; Li, Yun; Shen, Ting-Chin David et al. (2018) FXR-Dependent Modulation of the Human Small Intestinal Microbiome by the Bile Acid Derivative Obeticholic Acid. Gastroenterology 155:1741-1752.e5
Rickels, Michael R; DuBose, Stephanie N; Toschi, Elena et al. (2018) Mini-Dose Glucagon as a Novel Approach to Prevent Exercise-Induced Hypoglycemia in Type 1 Diabetes. Diabetes Care 41:1909-1916
Jang, Cholsoon; Hui, Sheng; Lu, Wenyun et al. (2018) The Small Intestine Converts Dietary Fructose into Glucose and Organic Acids. Cell Metab 27:351-361.e3

Showing the most recent 10 out of 720 publications