The Immunology of Type 1 Diabetes Core provides logistic support to investigators examining autoimmune or type 1 diabetes or other endocrine autoimmunities. The Core is centered in the Department of Pathology and Immunology. The Core provides: i) assistance in the maintenance of various inbred mouse lines, including conventional non-obese diabetic (NOD) mice and NOD lines in which a variety of immune-relevant molecules has been deleted;ii) training in the maintenance and testing of diabetogenic strains;iii) expertise in, and training for, the isolation and examination of islets of Langerhans;iv) services for the generation of new diabetogenic mouse strains using Balb/c and NOD embryonic stem cells;and v) provision of isolated cells, cell lines, and monoclonal antibodies relevant for immunological research. During the past funding cycle, services were provided to 31 investigators, which represents a doubling of service provided compared to the prior funding cycle. This reflects, in part, increased utilization of the most frequently requested service, maintenance and provision of inbred strains. The increase also reflects the new services for provision of cell lines, isolated immune cells, antibodies and peptides. The Core provides service to and has helped to cultivate a diverse group of investigators at Washington University with a commitment to studying the pathogenesis and treatment of type 1 diabetes. Services from this Core were instrumental in facilitating high impact studies of the immunobiology of type 1 diabetes.

Public Health Relevance

The Core provides services to facilitate the investigations of immunologists and diabetologists working to understand the pathogenesis of type 1 diabetes. The Core services are particulariy useful to faculty starting their own laboratories, or to faculty wishing to carry out pilot studies using autoimmune propensity mice. Importantly, this Core provides assistance with highly specialized immune models of type 1 diabetes that can be difficult to generate and propagate.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
2P30DK020579-36
Application #
8441757
Study Section
Special Emphasis Panel (ZDK1-GRB-S (O2))
Project Start
Project End
Budget Start
2012-12-01
Budget End
2013-11-30
Support Year
36
Fiscal Year
2013
Total Cost
$100,335
Indirect Cost
$34,325
Name
Washington University
Department
Type
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Hampton, Kaia K; Anderson, Katie; Frazier, Hilaree et al. (2018) Insulin Receptor Plasma Membrane Levels Increased by the Progesterone Receptor Membrane Component 1. Mol Pharmacol 94:665-673
Ferguson, Daniel; Blenden, Mitchell; Hutson, Irina et al. (2018) Mouse Embryonic Fibroblasts Protect ob/ob Mice From Obesity and Metabolic Complications. Endocrinology 159:3275-3286
Samovski, Dmitri; Dhule, Pallavi; Pietka, Terri et al. (2018) Regulation of Insulin Receptor Pathway and Glucose Metabolism by CD36 Signaling. Diabetes 67:1272-1284
Warren, Junco S; Tracy, Christopher M; Miller, Mickey R et al. (2018) Histone methyltransferase Smyd1 regulates mitochondrial energetics in the heart. Proc Natl Acad Sci U S A 115:E7871-E7880
Funk, Steven D; Bayer, Raymond H; Malone, Andrew F et al. (2018) Pathogenicity of a Human Laminin ?2 Mutation Revealed in Models of Alport Syndrome. J Am Soc Nephrol 29:949-960
Adams, Melissa T; Gilbert, Jennifer M; Hinojosa Paiz, Jesus et al. (2018) Endocrine cell type sorting and mature architecture in the islets of Langerhans require expression of Roundabout receptors in ? cells. Sci Rep 8:10876
Jung, Sang-Hee; Jung, Chan-Hee; Reaven, Gerald M et al. (2018) Adapting to insulin resistance in obesity: role of insulin secretion and clearance. Diabetologia 61:681-687
Bumpus, Emily; Hershey, Tamara; Doty, Tasha et al. (2018) Understanding activity participation among individuals with Wolfram Syndrome. Br J Occup Ther 81:348-357
Park, Sun-Ji; Kim, Yeawon; Chen, Ying Maggie (2018) Endoplasmic reticulum stress and monogenic kidney diseases in precision nephrology. Pediatr Nephrol :
De Silva, Gayan S; Saffaf, Khalid; Sanchez, Luis A et al. (2018) Amputation stump perfusion is predictive of post-operative necrotic eschar formation. Am J Surg 216:540-546

Showing the most recent 10 out of 654 publications