Recent advances in basic research techniques have led to an explosion of information and interest in the role of gastrointestinal peptides in health and disease. The function of these peptides has been shown to extend beyond their classical role as hormones to include actions as paracrine effectors, neurotransmitters, growth factors and cytokines. Peptides are well known to have a myriad of actions in the gastrointestinal tract, but also to have profound influences on the function of most of the body's organ systems. The ubiquitous distribution and myriad actions of gut peptides served as the catalyst that culminated in the formation of the University of Michigan Gastrointestinal Peptide Research Center;a successful multidisciplinary group of investigators that crosses traditional clinical disciplines and scientific boundaries. Advances in cell biology, biochemistry, and molecular biology have provided tools with which the genetic or molecular links between peptides and clinically relevant disorders of digestive function may be identified. The Center, through its Core laboratories and support of innovative Pilot/Feasibility projects, has provided expertise, technical and financial support that enables investigators to broaden the scope of their research. Our extramural and NIDDK digestive diseases related research base has increased nine fold since the Center's inception in 1984. Since the last renewal the Center focused on three thematic areas that reflect the common research interest of numerous investigators affiliated with the Center. These include 1.) the neurobiology regulating satiety, visceral pain and motility;2.) the roles of peptides in inflammatory digestive disorders such as gastritis, colitis, and pancreatitis and 3.) molecular mechanisms regulating cell growth, differentiation and apoptosis. In response to advances in new technologies we have streamlined our core laboratories into 1.) molecular biology;2.) peptide and proteomics;3.) cell biology and imaging studies and 4.) in vivo studies. New initiatives such as DNA microarray which allows investigators to scale up by several orders of magnitude the number of genes that can be examined simultaneously and proteomics which essentially have eliminated the gap between molecular biology and clinical biochemistry will be added to our core facilities. The Peptide Center has galvanized the activities of a large number of researchers who investigate the actions of gut peptides at the University of Michigan, as well as attract new investigators to this field of research. Through the current application, we are seeking to continue and expand the Center with the hope that together the group will approach questions of fundamental importance in the pathophysiology, diagnosis, and treatment of diseases in man.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK034933-24
Application #
7536429
Study Section
Special Emphasis Panel (ZDK1-GRB-8 (M1))
Program Officer
Podskalny, Judith M,
Project Start
1996-12-01
Project End
2010-11-30
Budget Start
2008-12-01
Budget End
2009-11-30
Support Year
24
Fiscal Year
2009
Total Cost
$1,074,961
Indirect Cost
Name
University of Michigan Ann Arbor
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
073133571
City
Ann Arbor
State
MI
Country
United States
Zip Code
48109
Cruz-Acuña, Ricardo; Quirós, Miguel; Huang, Sha et al. (2018) PEG-4MAL hydrogels for human organoid generation, culture, and in vivo delivery. Nat Protoc 13:2102-2119
Ye, Wei; Takabayashi, Hidehiko; Yang, Yitian et al. (2018) Regulation of Gastric Lgr5+ve Cell Homeostasis by Bone Morphogenetic Protein (BMP) Signaling and Inflammatory Stimuli. Cell Mol Gastroenterol Hepatol 5:523-538
Brady, Graham F; Kwan, Raymond; Bragazzi Cunha, Juliana et al. (2018) Lamins and Lamin-Associated Proteins in Gastrointestinal Health and Disease. Gastroenterology 154:1602-1619.e1
Hu, Yongjun; Song, Feifeng; Jiang, Huidi et al. (2018) SLC15A2 and SLC15A4 Mediate the Transport of Bacterially Derived Di/Tripeptides To Enhance the Nucleotide-Binding Oligomerization Domain-Dependent Immune Response in Mouse Bone Marrow-Derived Macrophages. J Immunol 201:652-662
McClintock, Shannon D; Colacino, Justin A; Attili, Durga et al. (2018) Calcium-Induced Differentiation of Human Colon Adenomas in Colonoid Culture: Calcium Alone versus Calcium with Additional Trace Elements. Cancer Prev Res (Phila) 11:413-428
Kim, Geun Hyang; Shi, Guojun; Somlo, Diane Rm et al. (2018) Hypothalamic ER-associated degradation regulates POMC maturation, feeding, and age-associated obesity. J Clin Invest 128:1125-1140
Wang, Xuexiang; Dande, Ranadheer R; Yu, Hao et al. (2018) TRPC5 Does Not Cause or Aggravate Glomerular Disease. J Am Soc Nephrol 29:409-415
Bhattacharya, Asmita; Sun, Shengyi; Wang, Heting et al. (2018) Hepatic Sel1L-Hrd1 ER-associated degradation (ERAD) manages FGF21 levels and systemic metabolism via CREBH. EMBO J 37:
Perry, Jeffrey W; Tai, Andrew W (2018) Random Insertional Mutagenesis of a Serotype 2 Dengue Virus Clone. Bio Protoc 8:
El-Zaatari, Mohamad; Bass, Adam J; Bowlby, Reanne et al. (2018) Indoleamine 2,3-Dioxygenase 1, Increased in Human Gastric Pre-Neoplasia, Promotes Inflammation and Metaplasia in Mice and Is Associated With Type II Hypersensitivity/Autoimmunity. Gastroenterology 154:140-153.e17

Showing the most recent 10 out of 757 publications