The mission ofthe Center for Gastrointestinal Biology and Disease is to promote and enhance multidisciplinary digestive disease research. The Center achieves this mission, in part, through core laboratories that provide training, technical support or laboratory services to researchers. The directors and the mission ofthe Histology and Imaging Core have changed over time in response to changes in the research needs and interests of Center members, but our commitment to providing cutting edge services for the benefit of our members has remained constant. The Histology and Imaging Core represents the evolution of a Molecular Biology Core that has been one of the CGIBD cores since 1989. When first conceived, the purpose ofthe molecular core was to provide services and training in molecular biology techniques. The core initially consisted of a basic recombinant DNA unit and a transgenic mouse development unit. The basic recombinant DNA unit provided core reagents, protocols, training and assistance for investigators vnth limited experience. The transgenic mouse unit (shared with other groups on campus) provided mouse models with over-expression or deletion of targeted genes for analyses of effects on gastrointestinal function. In 1993, the core added a Molecular Morphology unit that was designed to provide hands-on training, facilities and space for in situ hybridization histochemistry. The unit provided reagents and protocols for immunohistochemistry and staining, as well as state ofthe art image analysis facilities for analyzing molecular morphology data and for photographing and preparing data for publication and presentation. The expertise and needs of Center members evolved over time, and new technology became available. In order to reflect emphasis on microscopy and in-situ hybridization, the core was renamed the Molecular Imaging Core. Dr. John J. Lemasters, an expert in confocal microscopy, served as core director. The core offered a state-of-the-art confocal imaging facility for high resolution 3-dimensional optical imaging of thick cells and tissues, a histology laboratory to provide high quality histological services, a digital darkroom where image data could be analyzed, processed and prepared for presentation in a vnde variety of formats, and a consultation service. Dr. Lemasters was the heaviest user and the director of the confocal facility. When he left the University in 2006, we replaced confocal imaging and the digital darkroom vnth mouse endoscopy with the approval of NIDDK DDRCC Program Director Judith Podskalny. Investigators in need of confocal services were able to obtain these services elsewhere on our campus. In this renewal application we propose to subsidize confocal services which are important to the research of several of our members. We propose a new name for the Core - the Histology and Imaging Core. As described in the pages that follow, the core will provide: histology services (including immunohistochemisty, digital scanning and image analysis), confocal microscopy support, and mouse endoscopy.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
2P30DK034987-25
Application #
7764472
Study Section
Special Emphasis Panel (ZDK1-GRB-8 (M1))
Project Start
2010-03-15
Project End
2014-11-30
Budget Start
2010-03-15
Budget End
2010-11-30
Support Year
25
Fiscal Year
2010
Total Cost
$157,975
Indirect Cost
Name
University of North Carolina Chapel Hill
Department
Type
DUNS #
608195277
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Zhang, Cun-Jin; Wang, Chenhui; Jiang, Meiling et al. (2018) Act1 is a negative regulator in T and B cells via direct inhibition of STAT3. Nat Commun 9:2745
Evon, Donna M; Golin, Carol E; Ruffin, Rachel et al. (2018) Novel patient-reported outcomes (PROs) used in a pilot and feasibility study of a Cognitive Behavioral Coping Skills (CBCS) group intervention for patients with chronic hepatitis C. Pilot Feasibility Stud 4:92
Busch, Evan L; Don, Prabhani Kuruppumullage; Chu, Haitao et al. (2018) Diagnostic accuracy and prediction increment of markers of epithelial-mesenchymal transition to assess cancer cell detachment from primary tumors. BMC Cancer 18:82
Herfarth, Hans; Barnes, Edward L; Valentine, John F et al. (2018) Methotrexate Is Not Superior to Placebo in Maintaining Steroid-Free Response or Remission in Ulcerative Colitis. Gastroenterology 155:1098-1108.e9
Koutlas, N T; Eluri, S; Rusin, S et al. (2018) Impact of smoking, alcohol consumption, and NSAID use on risk for and phenotypes of eosinophilic esophagitis. Dis Esophagus 31:1-7
Reese, Aspen T; Cho, Eugenia H; Klitzman, Bruce et al. (2018) Antibiotic-induced changes in the microbiota disrupt redox dynamics in the gut. Elife 7:
Walker, Miriam Y; Pratap, Siddharth; Southerland, Janet H et al. (2018) Role of oral and gut microbiome in nitric oxide-mediated colon motility. Nitric Oxide 73:81-88
Smid, Marcela C; Ricks, Nitasha M; Panzer, Alexis et al. (2018) Maternal Gut Microbiome Biodiversity in Pregnancy. Am J Perinatol 35:24-30
Keith, Benjamin P; Barrow, Jasmine B; Toyonaga, Takahiko et al. (2018) Colonic epithelial miR-31 associates with the development of Crohn's phenotypes. JCI Insight 3:
Gracz, Adam D; Samsa, Leigh Ann; Fordham, Matthew J et al. (2018) Sox4 Promotes Atoh1-Independent Intestinal Secretory Differentiation Toward Tuft and Enteroendocrine Fates. Gastroenterology 155:1508-1523.e10

Showing the most recent 10 out of 944 publications