The Morphology Core Facility provides instrumentation and technical expertise for the preparation, acquisition and analysis of images of cells and tissues at both the light and electron microscopic level. Given the cost of such instrumentation and the high level of technical expertise required to perform these investigational techniques, this Core was established to ensure the availability of these techniques for Center members. In recognition of the broad usefulness of this Core facility, the School of Medicine has partnered with the Liver Center by making ongoing, major investments to ensure that the facility remains state-of-the-art. The Morphology Core offers the following specific activities and services, plus associated training and technical support: 1) confocal microscopy, 2) epifluorescence microscopy, including quantitative and ratio imaging, 3) multiphoton microscopy, 4) electron microscopy, and 5) time lapse microscopy and image processing and analysis. Over half of the members of the Liver Center used this core facility and the core was used in over one hundred publications during the current award period, reflecting the usefulness and importance of this resource for the mission of the Center.

Public Health Relevance

The primary focus of the Yale Liver Center is the study of liver structure, function and disease. The Morphology Core plays a key role in this endeavor by permitting direct visualization of the structure and function of the liver and its components at the cellular and subcellular level. This resource in turn helps investigators to better understand the function of cells within the liver in normal and disease states.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
2P30DK034989-31
Application #
8739107
Study Section
Special Emphasis Panel (ZDK1)
Project Start
Project End
Budget Start
2014-09-01
Budget End
2015-08-31
Support Year
31
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Yale University
Department
Type
DUNS #
City
New Haven
State
CT
Country
United States
Zip Code
06510
Madiraju, Anila K; Qiu, Yang; Perry, Rachel J et al. (2018) Metformin inhibits gluconeogenesis via a redox-dependent mechanism in vivo. Nat Med 24:1384-1394
Schmitz, Corinna; Noels, Heidi; El Bounkari, Omar et al. (2018) Mif-deficiency favors an atheroprotective autoantibody phenotype in atherosclerosis. FASEB J 32:4428-4443
Pan, Qiong; Zhang, Xiaoxun; Zhang, Liangjun et al. (2018) Solute Carrier Organic Anion Transporter Family Member 3A1 Is a Bile Acid Efflux Transporter in Cholestasis. Gastroenterology 155:1578-1592.e16
Jakab, Sofia Simona; Garcia-Tsao, Guadalupe (2018) Screening and Surveillance of Varices in Patients With Cirrhosis. Clin Gastroenterol Hepatol :
Fiorotto, Romina; Amenduni, Mariangela; Mariotti, Valeria et al. (2018) Src kinase inhibition reduces inflammatory and cytoskeletal changes in ?F508 human cholangiocytes and improves cystic fibrosis transmembrane conductance regulator correctors efficacy. Hepatology 67:972-988
Sari, Sinan; Dalgic, Buket; Muehlenbachs, Atis et al. (2018) Prototheca zopfii Colitis in Inherited CARD9 Deficiency. J Infect Dis 218:485-489
Yu, Dongke; Cai, Shi-Ying; Mennone, Albert et al. (2018) Cenicriviroc, a cytokine receptor antagonist, potentiates all-trans retinoic acid in reducing liver injury in cholestatic rodents. Liver Int 38:1128-1138
Garcia-Tsao, Guadalupe (2018) Regression of HCV cirrhosis: Time will tell. Hepatology 67:1651-1653
Hung, Adelina; Garcia-Tsao, Guadalupe (2018) Acute kidney injury, but not sepsis, is associated with higher procedure-related bleeding in patients with decompensated cirrhosis. Liver Int 38:1437-1441
Kaffe, Eleanna; Fiorotto, Romina; Pellegrino, Francesca et al. (2018) ?-Catenin and interleukin-1?-dependent chemokine (C-X-C motif) ligand 10 production drives progression of disease in a mouse model of congenital hepatic fibrosis. Hepatology 67:1903-1919

Showing the most recent 10 out of 763 publications