Much of the research at Joslin focuses on gaining an understanding of type 1 and type 2 diabetes at the cellular level. This includes studies of the cellular development of pancreafic beta cells, studies of the development and inflammafion of metabolically active muscle and adipose cells, and studies of the mediators and modifiers of autoimmunity toward beta cells. All of these research areas require analysis and isolation of well-defined, pure, populations of live cells. Flow cytometry and cell sorting within the Flow Core meet this need. Fluorescence activated cell sorting is currently the best method for rapid isolation of very well defined and highly purified, live cells. The Joslin Flow Cytometry Core's primary mission is to provide reliable and affordable cell sorting and flow cytometry services to its users, so that they can isolate, analyze, and study cells that increase our understanding of diabetes and its complications, and ultimately develop treatments and cures for these diseases. Cell sorting technology is confinuously evolving and improving, enabling new approaches to questions in diabetes research. Therefore, a second mission of the Flow Core is to confinually update and modernize to offer the most cutting edge cell sorting technology to its users. In addifion, because flow cytometry is traditionally thought of as an immunology tool, the Joslin Core's mission includes acfivifies that enhance the use of flow cytometry in other research areas, bringing this technology to new users and stimulating new avenues of diabetes research. The specific goals of the Core are: 1. To offer to Joslin researchers the use of reliable, well maintained, cutting edge, and cost-effective cell sorting and analysis machines. 2. To provide education and training to Joslin researchers regarding potential applications of flow cytometry. 3. To confinually update instrumentafion in response to new and cutfing-edge technology developments, including upgrades to exisfing instruments, addifion of new instrumentafion, and establishment of collaborative arrangements to help develop and evaluate new technology.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK036836-27
Application #
8545768
Study Section
Special Emphasis Panel (ZDK1-GRB-S)
Project Start
Project End
Budget Start
2013-09-01
Budget End
2014-08-31
Support Year
27
Fiscal Year
2013
Total Cost
$181,805
Indirect Cost
$59,288
Name
Joslin Diabetes Center
Department
Type
DUNS #
071723084
City
Boston
State
MA
Country
United States
Zip Code
02215
Rezanejad, Habib; Ouziel-Yahalom, Limor; Keyzer, Charlotte A et al. (2018) Heterogeneity of SOX9 and HNF1? in Pancreatic Ducts Is Dynamic. Stem Cell Reports 10:725-738
Katz, Michelle L; Guo, Zijing; Cheema, Alina et al. (2018) Management of Cardiovascular Disease Risk in Teens with Type 1 Diabetes: Perspectives of Teens With and Without Dyslipidemia and Parents. Pediatr Diabetes :
Gordin, Daniel; Harjutsalo, Valma; Tinsley, Liane et al. (2018) Differential Association of Microvascular Attributions With Cardiovascular Disease in Patients With Long Duration of Type 1 Diabetes. Diabetes Care 41:815-822
Teló, G H; Dougher, C E; Volkening, L K et al. (2018) Predictors of changing insulin dose requirements and glycaemic control in children, adolescents and young adults with Type 1 diabetes. Diabet Med 35:1355-1363
Srinivasan, Shylaja; Kaur, Varinderpal; Chamarthi, Bindu et al. (2018) TCF7L2 Genetic Variation Augments Incretin Resistance and Influences Response to a Sulfonylurea and Metformin: The Study to Understand the Genetics of the Acute Response to Metformin and Glipizide in Humans (SUGAR-MGH). Diabetes Care 41:554-561
Goldford, Joshua E; Lu, Nanxi; Baji?, Djordje et al. (2018) Emergent simplicity in microbial community assembly. Science 361:469-474
Soto, Marion; Orliaguet, Lucie; Reyzer, Michelle L et al. (2018) Pyruvate induces torpor in obese mice. Proc Natl Acad Sci U S A 115:810-815
Karst, Sonja G; Lammer, Jan; Radwan, Salma H et al. (2018) Characterization of In Vivo Retinal Lesions of Diabetic Retinopathy Using Adaptive Optics Scanning Laser Ophthalmoscopy. Int J Endocrinol 2018:7492946
Espeland, Mark A; Carmichael, Owen; Hayden, Kathleen et al. (2018) Long-term Impact of Weight Loss Intervention on Changes in Cognitive Function: Exploratory Analyses from the Action for Health in Diabetes Randomized Controlled Clinical Trial. J Gerontol A Biol Sci Med Sci 73:484-491
Kim, Youngjo; Bayona, Princess Wendy; Kim, Miri et al. (2018) Macrophage Lamin A/C Regulates Inflammation and the Development of Obesity-Induced Insulin Resistance. Front Immunol 9:696

Showing the most recent 10 out of 1120 publications