The major objective is to understand fundamental mechanisms of normal liver function, as well as alterations in these functions resulting form diseases caused by metabolic, drug, metal, inheritable and viral agents. Specific areas under study include transport processes, membrane receptor biology, and structural-functional relationships; molecular biology, somatic gene transfer and gene therapy, hepatic fibrosis and mechanisms of hepatic carcinogenesis; liver cell metabolism, heavy metal metabolism, mechanisms of liver injury and organelle pathology. By bringing excellent basic scientists into disease-related research, together with hematologists interested in fundamental mechanisms of hepatic dysfunction, we believe that imaginative approaches to basic cell biology, pathophysiology, diagnosis, treatment and prevention of liver disease will emerge. A large and diverse population provides many patients with viral, alcoholic and parasitic liver disease, as well as various inheritable disorders of the liver.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK041296-07
Application #
2141693
Study Section
Diabetes, Endocrinology and Metabolic Diseases B Subcommittee (DDK)
Project Start
1989-06-01
Project End
1999-05-31
Budget Start
1995-06-01
Budget End
1996-05-31
Support Year
7
Fiscal Year
1995
Total Cost
Indirect Cost
Name
Albert Einstein College of Medicine
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
009095365
City
Bronx
State
NY
Country
United States
Zip Code
10461
Dulyaninova, Natalya G; Ruiz, Penelope D; Gamble, Matthew J et al. (2018) S100A4 regulates macrophage invasion by distinct myosin-dependent and myosin-independent mechanisms. Mol Biol Cell 29:632-642
Kakabadze, Zurab; Kakabadze, Ann; Chakhunashvili, David et al. (2018) Decellularized human placenta supports hepatic tissue and allows rescue in acute liver failure. Hepatology 67:1956-1969
Rao, Lu; Hülsemann, Maren; Gennerich, Arne (2018) Combining Structure-Function and Single-Molecule Studies on Cytoplasmic Dynein. Methods Mol Biol 1665:53-89
Gong, Zhenwei; Tasset, Inmaculada; Diaz, Antonio et al. (2018) Humanin is an endogenous activator of chaperone-mediated autophagy. J Cell Biol 217:635-647
Kale, Abhijit; Ji, Zhejun; Kiparaki, Marianthi et al. (2018) Ribosomal Protein S12e Has a Distinct Function in Cell Competition. Dev Cell 44:42-55.e4
Caballero, Benjamin; Wang, Yipeng; Diaz, Antonio et al. (2018) Interplay of pathogenic forms of human tau with different autophagic pathways. Aging Cell 17:
Akiyama, Matthew J; Agyemang, Linda; Arnsten, Julia H et al. (2018) Rationale, design, and methodology of a trial evaluating three models of care for HCV treatment among injection drug users on opioid agonist therapy. BMC Infect Dis 18:74
Willis, Ian M (2018) Maf1 phenotypes and cell physiology. Biochim Biophys Acta Gene Regul Mech 1861:330-337
Wang, Tony Y; Portincasa, Piero; Liu, Min et al. (2018) Mouse models of gallstone disease. Curr Opin Gastroenterol 34:59-70
Hodge, Dayle Q; Cui, Jihong; Gamble, Matthew J et al. (2018) Histone Variant MacroH2A1 Plays an Isoform-Specific Role in Suppressing Epithelial-Mesenchymal Transition. Sci Rep 8:841

Showing the most recent 10 out of 451 publications