The overall objective of the Animal Models Core is to provide expertise to members of the CURE: Digestive Diseases Research Core Center (CURE: DDRCC) for in vivo characterization of normal and pathophysiological mechanisms of hormonal and neural regulation of gastrointestinal (GI) function and brain-gut interactions in rodents. The specific objectives are to provide CURE: DDRCC investigators access to: (1) in vivo experimental models to assess gastric and intestinal function in rats and mice;(2) specialized facilities and equipment to measure GI secretions, motor function, blood flow, resistance of the mucosa to injury and functional mapping of neuronal activity at the cellular level;(3) methods for in vivo administration of peptides, neurotransmitters, and drugs, sampling blood and body fluids, and tissue collection;(4) methods to assess afferent and efferent arms of the neural pathways involved in brain-gut interactions;(5) expertise in protocol design, data analysis and program development for analysis of electrophysiological traces;and (6) transgenic animals with specific gene mutations through interaction with transgenic Cores within UCLA.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK041301-20
Application #
7743047
Study Section
Special Emphasis Panel (ZDK1)
Project Start
Project End
Budget Start
2008-12-01
Budget End
2009-11-30
Support Year
20
Fiscal Year
2009
Total Cost
$164,400
Indirect Cost
Name
University of California Los Angeles
Department
Type
DUNS #
092530369
City
Los Angeles
State
CA
Country
United States
Zip Code
90095
Severino, Amie; Chen, Wenling; Hakimian, Joshua K et al. (2018) Mu-opioid receptors in nociceptive afferents produce a sustained suppression of hyperalgesia in chronic pain. Pain 159:1607-1620
Mirshafiee, Vahid; Sun, Bingbing; Chang, Chong Hyun et al. (2018) Toxicological Profiling of Metal Oxide Nanoparticles in Liver Context Reveals Pyroptosis in Kupffer Cells and Macrophages versus Apoptosis in Hepatocytes. ACS Nano 12:3836-3852
Ali, Ayub; Ng, Hwee L; Blankson, Joel N et al. (2018) Highly Attenuated Infection With a Vpr-Deleted Molecular Clone of Human Immunodeficiency Virus-1. J Infect Dis 218:1447-1452
Pothoulakis, Charalabos; Torre-Rojas, Monica; Duran-Padilla, Marco A et al. (2018) CRHR2/Ucn2 signaling is a novel regulator of miR-7/YY1/Fas circuitry contributing to reversal of colorectal cancer cell resistance to Fas-mediated apoptosis. Int J Cancer 142:334-346
Martin, Clair R; Osadchiy, Vadim; Kalani, Amir et al. (2018) The Brain-Gut-Microbiome Axis. Cell Mol Gastroenterol Hepatol 6:133-148
Olson, Christine A; Vuong, Helen E; Yano, Jessica M et al. (2018) The Gut Microbiota Mediates the Anti-Seizure Effects of the Ketogenic Diet. Cell 173:1728-1741.e13
Addante, Raymond; Naliboff, Bruce; Shih, Wendy et al. (2018) Predictors of Health-related Quality of Life in Irritable Bowel Syndrome Patients Compared With Healthy Individuals. J Clin Gastroenterol :
Ehrlich, Dean; Jamaluddin, Nimah; Pisegna, Joseph et al. (2018) A Challenging Case of Severe Ulcerative Colitis following the Initiation of Secukinumab for Ankylosing Spondylitis. Case Rep Gastrointest Med 2018:9679287
Gupta, Arpana; Woodworth, Davis C; Ellingson, Benjamin M et al. (2018) Disease-Related Microstructural Differences in the Brain in Women With Provoked Vestibulodynia. J Pain 19:528.e1-528.e15
Chen, Wenling; Taché, Yvette; Marvizón, Juan Carlos (2018) Corticotropin-Releasing Factor in the Brain and Blocking Spinal Descending Signals Induce Hyperalgesia in the Latent Sensitization Model of Chronic Pain. Neuroscience 381:149-158

Showing the most recent 10 out of 1097 publications