Since the founding of CURE by Dr. Morton I. Grosssman in 1973, a strong tradition of expertise has existed for exploring the physiological mechanisms involved in the regulation of GI function under normal and pathological conditions, as recently reviewed by the Animal Models Core Co-Director (1). In the past two decades, tremendous increases in knowledge derived from cell and molecular biological approaches have driven interest to evaluate in vitro findings within the context of integrative physiological models. Conversely, observations derived from the role of specific endogenous hormones or transmitters in the regulation of normal or abnormal GI functions in in vivo models have provided the impetus for focused mechanistic evaluation at the cellular level using molecular biological methods. Indeed, a common theme in many of the research programs of the Center investigators is the elucidation of the pathophysiological role and molecular mechanism of action of gastrointestinal peptide hormones, neuropeptides, paracrine regulators and classical neurotransmitters. Thus, in vivo studies are important for the implementation of many research programs of CURE: DDRCC members to: 1. Assess the biological significance of mechanisms elucidated in vitro; 2. Dissect the neural, hormonal and paracrine mechanisms involved in integrated physiological regulation of GI function; 3. Test biological activity of new reagents (i.e., antibodies, selective receptor agonists or antagonists or novel peptides); 4. Establish relevant models of GI diseases.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK041301-22
Application #
8208825
Study Section
Special Emphasis Panel (ZDK1)
Project Start
Project End
Budget Start
2010-12-01
Budget End
2011-11-30
Support Year
22
Fiscal Year
2011
Total Cost
$111,563
Indirect Cost
Name
University of California Los Angeles
Department
Type
DUNS #
092530369
City
Los Angeles
State
CA
Country
United States
Zip Code
90095
Chang, Hui-Hua; Moro, Aune; Chou, Caroline Ei Ne et al. (2018) Metformin Decreases the Incidence of Pancreatic Ductal Adenocarcinoma Promoted by Diet-induced Obesity in the Conditional KrasG12D Mouse Model. Sci Rep 8:5899
Pan, David Z; Garske, Kristina M; Alvarez, Marcus et al. (2018) Integration of human adipocyte chromosomal interactions with adipose gene expression prioritizes obesity-related genes from GWAS. Nat Commun 9:1512
Fang, Kai; Law, Ivy Ka Man; Padua, David et al. (2018) MicroRNA-31-3p Is Involved in Substance P (SP)-Associated Inflammation in Human Colonic Epithelial Cells and Experimental Colitis. Am J Pathol 188:586-599
Yakabi, Seiichi; Wang, Lixin; Karasawa, Hiroshi et al. (2018) VIP is involved in peripheral CRF-induced stimulation of propulsive colonic motor function and diarrhea in male rats. Am J Physiol Gastrointest Liver Physiol 314:G610-G622
Henström, Maria; Diekmann, Lena; Bonfiglio, Ferdinando et al. (2018) Functional variants in the sucrase-isomaltase gene associate with increased risk of irritable bowel syndrome. Gut 67:263-270
Soroosh, Artin; Koutsioumpa, Marina; Pothoulakis, Charalabos et al. (2018) Functional role and therapeutic targeting of microRNAs in inflammatory bowel disease. Am J Physiol Gastrointest Liver Physiol 314:G256-G262
Aschemeyer, Sharraya; Qiao, Bo; Stefanova, Deborah et al. (2018) Structure-function analysis of ferroportin defines the binding site and an alternative mechanism of action of hepcidin. Blood 131:899-910
Kaji, I; Akiba, Y; Furuyama, T et al. (2018) Free fatty acid receptor 3 activation suppresses neurogenic motility in rat proximal colon. Neurogastroenterol Motil 30:
Kim, Paul H; Luu, Jennings; Heizer, Patrick et al. (2018) Disrupting the LINC complex in smooth muscle cells reduces aortic disease in a mouse model of Hutchinson-Gilford progeria syndrome. Sci Transl Med 10:
Dong, Tien S; Aby, Elizabeth S; Benhammou, Jihane N et al. (2018) Metabolic syndrome does not affect sustained virologic response of direct-acting antivirals while hepatitis C clearance improves hemoglobin A1c. World J Hepatol 10:612-621

Showing the most recent 10 out of 1097 publications