The Yale Diabetes Endocrinology Research Center was established in the Spring of 1993 with the goal of promoting research in diabetes and related metabolic and endocrine disorders at the University. The Center brings together a multidisciplinary group of nearly 100 independent member scientists as well as professional supporting staff, new investigators and research trainees from the Departments of Internal Medicine, Pediatrics, Immunobiology, Biology, Cell Biology, Molecular Biophysics and Biochemistry, Genetics, Molecular and Cellular Physiology, Pharmacology, Surgery, Orthopedics, Neurosurgery, Neurology, Psychiatry, Dermatology, Obstetrics and Gynecology, Diagnostic Radiology and from the Schools of Public Health and Nursing. The scope of the research activities of the membership is very broad, ranging from basic molecular biology to whole body clinical physiology in diabetic patients. The members, however, share a common interest in research that is related to diabetes and metabolism or is fundamental to understanding its pathogenesis or for the development of: new treatment strategies. The design of the Yale DERC is aimed at developing an infrastructure that could serve as a catalyst to stimulate innovative research. The cornerstone of the Center is its seven Research Cores that provide funded basic and clinical investigators with the opportunity to more efficiently utilize resources and expand the scope of their research programs. The Clinical Metabolism Core facilitates metabolic research in patients, whereas the Molecular, Microarray, Transgenic, Animal Genetics, Animal Physiology and Cell Biology Cores that comprise the Animal Resource Program offer investigators the tools to create and test novel animal models starting from the molecule and ending with biological outcomes. The Administrative Core oversees the operation of the Center, its Pilot/Feasibility Project and Enrichment Programs, and helps to coordinate patient-based research in diabetes. The goals of the DERC are to: 1) stimulate multidisciplinary interactions, particularly between basic and clinical scientists; 2) efficiently organize time consuming and/or costly techniques through Core facilities to enhance the productivity of investigators conducting research in diabetes related areas; 3) promote new research programs through pilot feasibility projects; 4) enhance the quality of research training, and 5) create an institutional environment that amplifies and expands research efforts in diabetes or related metabolic and endocrine disorders.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
2P30DK045735-11
Application #
6576658
Study Section
Special Emphasis Panel (ZDK1-GRB-7 (O1))
Program Officer
Abraham, Kristin M
Project Start
1993-01-01
Project End
2007-12-31
Budget Start
2003-04-15
Budget End
2003-12-31
Support Year
11
Fiscal Year
2003
Total Cost
$1,480,779
Indirect Cost
Name
Yale University
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
043207562
City
New Haven
State
CT
Country
United States
Zip Code
06520
Perry, Rachel J; Peng, Liang; Cline, Gary W et al. (2018) Mechanisms by which a Very-Low-Calorie Diet Reverses Hyperglycemia in a Rat Model of Type 2 Diabetes. Cell Metab 27:210-217.e3
Xu, Ke; Zhang, Xinyu; Wang, Zuoheng et al. (2018) Epigenome-wide association analysis revealed that SOCS3 methylation influences the effect of cumulative stress on obesity. Biol Psychol 131:63-71
Xiang, Anny H; Trigo, Enrique; Martinez, Mayra et al. (2018) Impact of Gastric Banding Versus Metformin on ?-Cell Function in Adults With Impaired Glucose Tolerance or Mild Type 2 Diabetes. Diabetes Care 41:2544-2551
Belfort-DeAguiar, Renata; Seo, Dongju; Lacadie, Cheryl et al. (2018) Humans with obesity have disordered brain responses to food images during physiological hyperglycemia. Am J Physiol Endocrinol Metab 314:E522-E529
Szczepanik, Marian; Majewska-Szczepanik, Monika; Wong, Florence S et al. (2018) Regulation of contact sensitivity in non-obese diabetic (NOD) mice by innate immunity. Contact Dermatitis 79:197-207
Yu, Hua; Paiva, Ricardo; Flavell, Richard A (2018) Harnessing the power of regulatory T-cells to control autoimmune diabetes: overview and perspective. Immunology 153:161-170
Samuel, Varman T; Shulman, Gerald I (2018) Nonalcoholic Fatty Liver Disease as a Nexus of Metabolic and Hepatic Diseases. Cell Metab 27:22-41
Abulizi, Abudukadier; Camporez, João-Paulo; Zhang, Dongyan et al. (2018) Ectopic lipid deposition mediates insulin resistance in adipose specific 11?-Hydroxysteroid dehydrogenase type 1 transgenic mice. Metabolism :
Rash, Brian G; Micali, Nicola; Huttner, Anita J et al. (2018) Metabolic regulation and glucose sensitivity of cortical radial glial cells. Proc Natl Acad Sci U S A 115:10142-10147
Kumar, Nikit; Leonzino, Marianna; Hancock-Cerutti, William et al. (2018) VPS13A and VPS13C are lipid transport proteins differentially localized at ER contact sites. J Cell Biol 217:3625-3639

Showing the most recent 10 out of 620 publications