The Yale-DRC Clinical Metabolism Core provides comprehensive support for investigators conducting clinical investigations of human diseases of metabolism such as diabetes. The primary emphasis of this core is to provide analytical resources for patient-oriented studies utilizing stable isotopes to determine metabolic flux at the whole body and tissue specific levels. Secondarily, the core also makes its analytical resources available to researchers utilizing rat and cell models of human metabolic diseases. Stable isotopes offer unique advantages over traditional radioisotopic methods for assessing substrate turnover in humans as they do not expose subjects to ioniziing radiation and they provide positional isotopomer information that can be used to assess flux through critical metabolic pathways. The major limitation to the use of stable isotopes by the clinical investigator is the need for sophisticated and expensive instrumentation and highly skilled expertise for instrument operation and for data analysis and interpretation. The Yale-DRC Clinical Metabolism Core removes these obstacles by providing the personnel and resources needed for the extraction, purification, derivatization, and instrumental analysis needed to determine the concentrations and isotopic enrichments of metabolites in plasm a, urine, or tissues. This core measures the isotopic (e.g., 2H, 13C, 15N, and 18O) enrichment and concentrations of over 140 intermediary metabolites by GC-MS, LC/MS/MS, and NMR for the calculation of turnover of carbohydrates, lipids, and proteins. The primary purposes of the Yale-DRC Clinical Metabolism Core are to: 1) make GC-MS, LC- MS/MS, and NMR analyses available to Yale DRC members, 2) avoid duplication of costs associated with personnel and instrumentation, 3.) provide standardized protocols to insure consistent and accurate sample analysis, 4) assist Yale DRC researchers in the design and interpretation of experiments utilizing stable isotopes for measurement of metabolic flux, 5.) develop new methodology in response to the emerging research needs of Yale DRC members.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK045735-29
Application #
10104494
Study Section
Special Emphasis Panel (ZDK1)
Project Start
1997-01-01
Project End
2023-01-31
Budget Start
2021-02-01
Budget End
2022-01-31
Support Year
29
Fiscal Year
2021
Total Cost
Indirect Cost
Name
Yale University
Department
Type
DUNS #
043207562
City
New Haven
State
CT
Country
United States
Zip Code
06520
Hwang, Janice Jin; Parikh, Lisa; Lacadie, Cheryl et al. (2018) Hypoglycemia unawareness in type 1 diabetes suppresses brain responses to hypoglycemia. J Clin Invest 128:1485-1495
Wang, Yongliang; Nasiri, Ali R; Damsky, William E et al. (2018) Uncoupling Hepatic Oxidative Phosphorylation Reduces Tumor Growth in Two Murine Models of Colon Cancer. Cell Rep 24:47-55
RISE Consortium (2018) Impact of Insulin and Metformin Versus Metformin Alone on ?-Cell Function in Youth With Impaired Glucose Tolerance or Recently Diagnosed Type 2 Diabetes. Diabetes Care 41:1717-1725
Tan, Qiyuan; Tai, Ningwen; Li, Yangyang et al. (2018) Activation-induced cytidine deaminase deficiency accelerates autoimmune diabetes in NOD mice. JCI Insight 3:
Madiraju, Anila K; Qiu, Yang; Perry, Rachel J et al. (2018) Metformin inhibits gluconeogenesis via a redox-dependent mechanism in vivo. Nat Med 24:1384-1394
Goldberg, Ira J; Reue, Karen; Abumrad, Nada A et al. (2018) Deciphering the Role of Lipid Droplets in Cardiovascular Disease: A Report From the 2017 National Heart, Lung, and Blood Institute Workshop. Circulation 138:305-315
Stamatouli, Angeliki M; Quandt, Zoe; Perdigoto, Ana Luisa et al. (2018) Collateral Damage: Insulin-Dependent Diabetes Induced With Checkpoint Inhibitors. Diabetes 67:1471-1480
Li, Nina Xiaoyan; Brown, Stacey; Kowalski, Tim et al. (2018) GPR119 Agonism Increases Glucagon Secretion During Insulin-Induced Hypoglycemia. Diabetes 67:1401-1413
Qiu, Yang; Perry, Rachel J; Camporez, João-Paulo G et al. (2018) In vivo studies on the mechanism of methylene cyclopropyl acetic acid and methylene cyclopropyl glycine-induced hypoglycemia. Biochem J 475:1063-1074
Perry, Rachel J; Peng, Liang; Cline, Gary W et al. (2018) Publisher Correction: Non-invasive assessment of hepatic mitochondrial metabolism by positional isotopomer NMR tracer analysis (PINTA). Nat Commun 9:498

Showing the most recent 10 out of 620 publications