The primary objective of the Physiology Core is to provide DRC members with access to centralized facilities, services and technical expertise to address complex metabolic questions related to diabetes using normal, diabetic or genetically modified rodent models. The core is structured into two Sub-cores, the Animal Surgery and Experimental Procedure Sub-core and the Analytical Sub-core, each of which contains specialized equipment and key personnel to help DRC investigators and/or their trainees achieve their tasks in the most efficient and cost-effective manner. It also serves as a forum for collaboration between members with different research backgrounds, but a common interest in studying diabetes. Through the Animal Surgery and Experimental Procedure Sub-core, DRC investigators gain access to training, equipment, laboratory facilities and technical expertise to perform complex rodent surgeries, including the placement of vascular catheters and other implantables, such as brain micro-injection and micro-dialysis probes. Core staff help carry out complex metabolic studies using specialized experimental methodologies (e.g. glucose clamps, tracers, microdialysis and amperometric studies) in conscious mice and rats ? skills that are not easily accessible to investigators without previous training or experience, particularly young investigators, fellows, and pilot award recipients. The Analytical Sub-core provides DRC members with a central facility for the measurement of glucoregulatory hormones, cytokines and neurotransmitters specifically derived from rodent studies. This component of the Physiology Core benefits from the expertise and equipment of an on-going and prolific radioimmunoassay and HPLC facility. Expansion of the repertoire of mass spectrometry-based assays and establishment of a DRC - Mass Spectrometry Shared Resource to measure cytokines and neurotransmitters and to offer state-of-the-art proteomic methods of protein detection and post-translational modification quantification will serve to greatly enhance the value of this core to the DRC investigator community. Together, these two sub-cores provide DRC members with the unique opportunity to systematically address pertinent mechanistic questions in vivo and to assess metabolic changes in both the central nervous system and peripheral tissues in the most efficient and economical manner.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK045735-29
Application #
10104500
Study Section
Special Emphasis Panel (ZDK1)
Project Start
1997-01-01
Project End
2023-01-31
Budget Start
2021-02-01
Budget End
2022-01-31
Support Year
29
Fiscal Year
2021
Total Cost
Indirect Cost
Name
Yale University
Department
Type
DUNS #
043207562
City
New Haven
State
CT
Country
United States
Zip Code
06520
Belfort-DeAguiar, Renata; Seo, Dongju; Lacadie, Cheryl et al. (2018) Humans with obesity have disordered brain responses to food images during physiological hyperglycemia. Am J Physiol Endocrinol Metab 314:E522-E529
Szczepanik, Marian; Majewska-Szczepanik, Monika; Wong, Florence S et al. (2018) Regulation of contact sensitivity in non-obese diabetic (NOD) mice by innate immunity. Contact Dermatitis 79:197-207
Yu, Hua; Paiva, Ricardo; Flavell, Richard A (2018) Harnessing the power of regulatory T-cells to control autoimmune diabetes: overview and perspective. Immunology 153:161-170
Samuel, Varman T; Shulman, Gerald I (2018) Nonalcoholic Fatty Liver Disease as a Nexus of Metabolic and Hepatic Diseases. Cell Metab 27:22-41
Abulizi, Abudukadier; Camporez, João-Paulo; Zhang, Dongyan et al. (2018) Ectopic lipid deposition mediates insulin resistance in adipose specific 11?-Hydroxysteroid dehydrogenase type 1 transgenic mice. Metabolism :
Rash, Brian G; Micali, Nicola; Huttner, Anita J et al. (2018) Metabolic regulation and glucose sensitivity of cortical radial glial cells. Proc Natl Acad Sci U S A 115:10142-10147
Kumar, Nikit; Leonzino, Marianna; Hancock-Cerutti, William et al. (2018) VPS13A and VPS13C are lipid transport proteins differentially localized at ER contact sites. J Cell Biol 217:3625-3639
Flannery, Clare A; Choe, Gina H; Cooke, Katherine M et al. (2018) Insulin Regulates Glycogen Synthesis in Human Endometrial Glands Through Increased GYS2. J Clin Endocrinol Metab 103:2843-2850
Benedetti, Lorena; Barentine, Andrew E S; Messa, Mirko et al. (2018) Light-activated protein interaction with high spatial subcellular confinement. Proc Natl Acad Sci U S A 115:E2238-E2245
Perry, Rachel J; Wang, Yongliang; Cline, Gary W et al. (2018) Leptin Mediates a Glucose-Fatty Acid Cycle to Maintain Glucose Homeostasis in Starvation. Cell 172:234-248.e17

Showing the most recent 10 out of 620 publications