The Washington University DDRCC's mission is to support and promote digestive disease related research in an efficient and cost effective manner. The Biobank Core was designed to lessen barriers associated with performing human studies to rapidly promote basic and clinical research in human digestive diseases. The Biobank Core functions as both an archival repository of specimens linked with clinical metadata acquired from individuals with digestive diseases and as a program to prospectively enroll patients, collect specimens, process and store specimens, and facilitate downstream high throughput analysis to support DDRCC members' studies. The overarching aim of the Biobank Core is to promote, facilitate, and accelerate basic and clinical-translational observational studies of human digestive disease.
Aim 1 : Develop and maintain an archival specimen dataset linked with clinical metadata to rapidly support retrospective studies of human digestive disease by DDRCC members.
Aim 2 : Develop and maintain the infrastructure to support and rapidly and efficiently execute prospective observational studies in human digestive disease by DDRCC members.
Aim 3 : Develop and maintain the infrastructure to support large observational studies of human digestive disease across multiple institutions throughout the United States. HIGHLIGHTS - Since November 2009, the Biobank Core has expanded and promoted the infrastructure to support observational studies in human digestive disease by 1) establishing and maintaining an open IRB protocol allowing the broad collection and sharing of specimens and clinical data 2) training, and retaining personnel 3) developing pipelines to rapidly obtain quality and high throughput analysis 4) developing protocols to allow specimens and data to be efficiently shared with other institutions 5) enrolling 3900 patients and collecting over 7000 specimens from over 11 digestive related disease categories as of 4/1/2013 collected over 7,000 specimens and their derivatives linked with clinical metadata, performed extensive genotype analysis on over 1,500 patients as of 4/1/2013. We have supported 20 Washington University DDRCC investigators including 30% of the current full members of the DDRCC, with 8 ongoing prospective collections. This has resulted in 39 publications supported by the DDRCC Biobank Core and has led to 13 additional grants (8 from the NIH) submitted and/or obtained with the Biobank's support. We are participating in consortium studies in human gastrointestinal disease involving 8 other institutions throughout the United States.

Public Health Relevance

Extending basic research findings to human digestive disease and translating these findings to the clinical setting is a major goal of the Washington University DDRCC. The Biobank Core promotes, facilitates, and accelerates studies of human digestive disease by functioning as both an repository of archival specimens linked with relevant clinical data and as a platform studies in humans.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK052574-19
Application #
9394002
Study Section
Special Emphasis Panel (ZDK1)
Project Start
Project End
Budget Start
2017-12-01
Budget End
2018-11-30
Support Year
19
Fiscal Year
2018
Total Cost
Indirect Cost
Name
Washington University
Department
Type
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Brenot, Audrey; Knolhoff, Brett L; DeNardo, David G et al. (2018) SNAIL1 action in tumor cells influences macrophage polarization and metastasis in breast cancer through altered GM-CSF secretion. Oncogenesis 7:32
Luo, Jialie; Feng, Jing; Yu, Guang et al. (2018) Transient receptor potential vanilloid 4-expressing macrophages and keratinocytes contribute differentially to allergic and nonallergic chronic itch. J Allergy Clin Immunol 141:608-619.e7
Tarr, Gillian A M; Oltean, Hanna N; Phipps, Amanda I et al. (2018) Strength of the association between antibiotic use and hemolytic uremic syndrome following Escherichia coli O157:H7 infection varies with case definition. Int J Med Microbiol 308:921-926
Baumann-Dudenhoeffer, Aimee M; D'Souza, Alaric W; Tarr, Phillip I et al. (2018) Infant diet and maternal gestational weight gain predict early metabolic maturation of gut microbiomes. Nat Med 24:1822-1829
Kumar, Pardeep; Kuhlmann, F Matthew; Chakraborty, Subhra et al. (2018) Enterotoxigenic Escherichia coli-blood group A interactions intensify diarrheal severity. J Clin Invest 128:3298-3311
Smith, Gordon I; Commean, Paul K; Reeds, Dominic N et al. (2018) Effect of Protein Supplementation During Diet-Induced Weight Loss on Muscle Mass and Strength: A Randomized Controlled Study. Obesity (Silver Spring) 26:854-861
Bockerstett, Kevin A; Wong, Chun Fung; Koehm, Sherri et al. (2018) Molecular Characterization of Gastric Epithelial Cells Using Flow Cytometry. Int J Mol Sci 19:
Porter, Lane C; Franczyk, Michael P; Pietka, Terri et al. (2018) NAD+-dependent deacetylase SIRT3 in adipocytes is dispensable for maintaining normal adipose tissue mitochondrial function and whole body metabolism. Am J Physiol Endocrinol Metab 315:E520-E530
Rubin, Deborah C (2018) CFTR and the Regulation of Crypt Cell Proliferation. Cell Mol Gastroenterol Hepatol 5:418-419
Hoshi, Masato; Reginensi, Antoine; Joens, Matthew S et al. (2018) Reciprocal Spatiotemporally Controlled Apoptosis Regulates Wolffian Duct Cloaca Fusion. J Am Soc Nephrol 29:775-783

Showing the most recent 10 out of 899 publications