PAMOC The overarching mission of the WU-DDRCC is to promote collaborative, multidisciplinary research focused on interactions between host and environment in digestive disease. The Precision Animal Models and Organoids Core (PAMOC) evolved over the previous funding period in response to changes in members' needs, and with the establishment of a new institutional gnotobiotic facility. These changes, along with guidance from our External Advisory Board, encouraged us to modify the services and objectives of this Core. Accordingly, our current objectives are to 1) assist investigators in the efficient and cost-effective development and propagation of genetically altered mouse models to elucidate the pathogenesis of digestive diseases; and 2) assist investigators in the culture of human and mouse gastrointestinal epithelial cell organoids to address cell biological questions relevant to digestive diseases and host-environment interactions. Both human and mouse gastrointestinal epithelial cells and the required media are available to DDRCC investigators for growth and differentiation of organoids. These novel models will serve as important avenues for pre-clinical studies and enable translation of basic research advances into clinical practice. KEY ACCOMPLISHMENTS since 2013 include: completed 24 nucleic acid injection projects (both conventional DNA transgenes and CRISPR/Cas9/targeting vector injections) for 7 members; 3 embryonic stem cell injection projects for 2 members; and 11 withdrawals of transgenic/knockin mice from the Mouse Bank by 9 members. Gnotobiotic services (provision of germ-free mice, rederivation to germ-free status, and gnotobiotic conventionalization) were provided to 6 members. Related to the proposed Organoid component, we have already distributed human cell lines as well as wild type and reporter mouse cell lines to 13 members. We also provided L-WRN conditioned media to 9 members. Since 2013, 22 members used the Core, resulting in 57 publications citing the WU-DDRCC.
Our SPECIFIC AIMS i nclude: (1) To assist investigators in the generation and propagation of transgenic, knockout, and knockin mice for the study of digestive diseases. This includes injections of nucleic acids, including CRISPR/Cas9 and TALEN reagents, into zygotes, assistance with rederivation of lines as specific pathogen free, and in vitro fertilization. (2) To maintain a ?Mouse Bank? containing transgenic strains of use to DDRCC investigators and to provide these mice on demand for digestive disease-relevant projects. (3) To provide banked human and mouse gastrointestinal epithelial cell lines and the culture media required for successful growth of organoids and for growth of epithelial cell monolayers. Support for monitoring cell growth and for imaging organoids will also be provided. (4) To provide assistance with the derivation of new gastrointestinal epithelial cell lines from mice and humans.
Aims 1 and 2 will continue to leverage the outstanding facilities, personnel, and expertise of the Washington University Institutional Mouse Genetics Core.
Aims 3 and 4 will benefit from infrastructure and expertise developed by Dr. Ciorba and his collaborators here at Washington University.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK052574-22
Application #
10129355
Study Section
Special Emphasis Panel (ZDK1)
Project Start
Project End
Budget Start
2020-12-01
Budget End
2021-11-30
Support Year
22
Fiscal Year
2021
Total Cost
Indirect Cost
Name
Washington University
Department
Type
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Gathungu, Grace; Zhang, Yuanhao; Tian, Xinyu et al. (2018) Impaired granulocyte-macrophage colony-stimulating factor bioactivity accelerates surgical recurrence in ileal Crohn's disease. World J Gastroenterol 24:623-630
Feng, Jing; Luo, Jialie; Yang, Pu et al. (2018) Piezo2 channel-Merkel cell signaling modulates the conversion of touch to itch. Science 360:530-533
Eberth, Jan M; Josey, Michele J; Mobley, Lee R et al. (2018) Who Performs Colonoscopy? Workforce Trends Over Space and Time. J Rural Health 34:138-147
Zhang, Daoxiang; Li, Lin; Jiang, Hongmei et al. (2018) Tumor-Stroma IL1?-IRAK4 Feedforward Circuitry Drives Tumor Fibrosis, Chemoresistance, and Poor Prognosis in Pancreatic Cancer. Cancer Res 78:1700-1712
Sullender, Meagan E; Baldridge, Megan T (2018) Norovirus interactions with the commensal microbiota. PLoS Pathog 14:e1007183
Brenot, Audrey; Knolhoff, Brett L; DeNardo, David G et al. (2018) SNAIL1 action in tumor cells influences macrophage polarization and metastasis in breast cancer through altered GM-CSF secretion. Oncogenesis 7:32
Luo, Jialie; Feng, Jing; Yu, Guang et al. (2018) Transient receptor potential vanilloid 4-expressing macrophages and keratinocytes contribute differentially to allergic and nonallergic chronic itch. J Allergy Clin Immunol 141:608-619.e7
Tarr, Gillian A M; Oltean, Hanna N; Phipps, Amanda I et al. (2018) Strength of the association between antibiotic use and hemolytic uremic syndrome following Escherichia coli O157:H7 infection varies with case definition. Int J Med Microbiol 308:921-926
Baumann-Dudenhoeffer, Aimee M; D'Souza, Alaric W; Tarr, Phillip I et al. (2018) Infant diet and maternal gestational weight gain predict early metabolic maturation of gut microbiomes. Nat Med 24:1822-1829
Kumar, Pardeep; Kuhlmann, F Matthew; Chakraborty, Subhra et al. (2018) Enterotoxigenic Escherichia coli-blood group A interactions intensify diarrheal severity. J Clin Invest 128:3298-3311

Showing the most recent 10 out of 899 publications