The potential to reliably and safety transfer genetic material into the central nervous system holds promise in providing gene therapy to treat both genetically-associated neuropathologies and pathologies where there is altered activity in identified neural systems that can be manipulated by modulation of genetic expression. To reach this goal, experimental strategies to optimize the delivery of genetic material must be studied in defined neuronal systems and in systems where functional actions are known and can be assessed. The vasopressin synthesizing magnocellular neurons of the hypothalamic- neurohypophyseal tract have served as an extremely valuable model for the discovery of basic principles in neurobiology. In addition, these cells play critical physiological roles in the maintenance of body fluid balance and in cardiovascular regulation. The focus of this proposal is to take advantage of our experience studying vasopressin neurons of the hypothalamic-neurohypophyseal tract. We will apply our knowledge of the basic neurobiology of this defined system to study and develop strategies for enhancing gene transfer into identified neurons, and then to test these optimized methods in pathological models where vasopressin has been implicated. Specifically, the studies in this proposal are directed at 1) devising methods to obtain maximum and specific gene transfer to the magnocellular neurons of the hypothalamic-neurohypophyseal tract, 2) inducing in magnocellular neurons the capacity to synthesize and secrete vasopressin in a genetic animal model of familial diabetes insipidus, the di/di Brattleboro rat, and 3) down-regulating the release of vasopressin in a genetic model of essential hypertension, the spontaneously hypertensive rat (SHR).

Project Start
1998-09-30
Project End
1999-08-31
Budget Start
1997-10-01
Budget End
1998-09-30
Support Year
1
Fiscal Year
1998
Total Cost
Indirect Cost
Name
University of Iowa
Department
Type
DUNS #
041294109
City
Iowa City
State
IA
Country
United States
Zip Code
52242
Wang, Zekun; Cheng, Fang; Engelhardt, John F et al. (2018) Development of a Novel Recombinant Adeno-Associated Virus Production System Using Human Bocavirus 1 Helper Genes. Mol Ther Methods Clin Dev 11:40-51
Allen, Rondine J; Mathew, Basil; Rice, Kevin G (2018) PEG-Peptide Inhibition of Scavenger Receptor Uptake of Nanoparticles by the Liver. Mol Pharm 15:3881-3891
Polgreen, Philip M; Brown, Grant D; Hornick, Douglas B et al. (2018) CFTR Heterozygotes Are at Increased Risk of Respiratory Infections: A Population-Based Study. Open Forum Infect Dis 5:ofy219
Montoro, Daniel T; Haber, Adam L; Biton, Moshe et al. (2018) A revised airway epithelial hierarchy includes CFTR-expressing ionocytes. Nature 560:319-324
Guo, Ang; Wang, Yihui; Chen, Biyi et al. (2018) E-C coupling structural protein junctophilin-2 encodes a stress-adaptive transcription regulator. Science 362:
Martinez, Fernando J; Han, MeiLan K; Allinson, James P et al. (2018) At the Root: Defining and Halting Progression of Early Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 197:1540-1551
Ash, Samuel Y; Rahaghi, Farbod N; Come, Carolyn E et al. (2018) Pruning of the Pulmonary Vasculature in Asthma. The Severe Asthma Research Program (SARP) Cohort. Am J Respir Crit Care Med 198:39-50
Reznikov, Leah R; Meyerholz, David K; Kuan, Shin-Ping et al. (2018) Solitary Cholinergic Stimulation Induces Airway Hyperreactivity and Transcription of Distinct Pro-inflammatory Pathways. Lung 196:219-229
Martinez, Carlos H; Li, Sara X; Hirzel, Andrew J et al. (2018) Alveolar eosinophilia in current smokers with chronic obstructive pulmonary disease in the SPIROMICS cohort. J Allergy Clin Immunol 141:429-432
Schmidt, Megan E; Knudson, Cory J; Hartwig, Stacey M et al. (2018) Memory CD8 T cells mediate severe immunopathology following respiratory syncytial virus infection. PLoS Pathog 14:e1006810

Showing the most recent 10 out of 669 publications