The primary goal of the recently renamed Functional Genomics and Microbiome Core (Core C) is to enhance research programs in infection and injury states affecting the mammalian intestine and liver by providing genomics and metagenomics expertise and resources. In this Core, we utilize advanced technology in mammalian and microbial genomics to support ongoing and innovative research to prevent and cure digestive diseases. This Core enables investigators to posit research questions related to gene expression, functional genomics and molecular mechanisms by utilizing the tools of microarrays, deep nucleic acid sequencing (microbial and mammalian), nucleic acid amplification, protein profiling, and bioinformatics. PCR based analyses of gene expression and splicing, DNA mutation/SNP detection, and gene pathway analyses ofthe mammalian metagenome (microbe and man) will be fostered by this Core as a platform for gastrointestinal and hepatic systems biology. Our mission is to provide a full service resource from experimental design to consultations about specimen processing, robust data analysis pipelines, and biostatistical support. In summary, we have created a fully integrated genomic analysis platform for investigators studying digestive diseases.

Public Health Relevance

This Core provides help with complex molecular technologies such as gene expression profiling and genomic microarray analyses, complex protein bead assays, metagenomic sequencing and microbiome analyses needed by DDC members.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
4P30DK056338-14
Application #
9024509
Study Section
Special Emphasis Panel (ZDK1-GRB-8)
Project Start
Project End
Budget Start
2016-03-01
Budget End
2017-02-28
Support Year
14
Fiscal Year
2016
Total Cost
$195,625
Indirect Cost
$70,625
Name
Baylor College of Medicine
Department
Type
DUNS #
051113330
City
Houston
State
TX
Country
United States
Zip Code
77030
Graham, David Y; Dore, Maria Pina; Lu, Hong (2018) Understanding treatment guidelines with bismuth and non-bismuth quadruple Helicobacter pylori eradication therapies. Expert Rev Anti Infect Ther 16:679-687
Jarrett, Kelsey E; Lee, Ciaran; De Giorgi, Marco et al. (2018) Somatic Editing of Ldlr With Adeno-Associated Viral-CRISPR Is an Efficient Tool for Atherosclerosis Research. Arterioscler Thromb Vasc Biol 38:1997-2006
Call, Lee; Stoll, Barbara; Oosterloo, Berthe et al. (2018) Metabolomic signatures distinguish the impact of formula carbohydrates on disease outcome in a preterm piglet model of NEC. Microbiome 6:111
Yuan, Xiaoyi; Lee, Jae W; Bowser, Jessica L et al. (2018) Targeting Hypoxia Signaling for Perioperative Organ Injury. Anesth Analg 126:308-321
Donaldson, G P; Ladinsky, M S; Yu, K B et al. (2018) Gut microbiota utilize immunoglobulin A for mucosal colonization. Science 360:795-800
White, Donna L; Hoogeveen, Ron C; Chen, Liang et al. (2018) A prospective study of soluble receptor for advanced glycation end products and adipokines in association with pancreatic cancer in postmenopausal women. Cancer Med 7:2180-2191
Wang, Changjun; Zaheer, Mahira; Bian, Fang et al. (2018) Sjögren-Like Lacrimal Keratoconjunctivitis in Germ-Free Mice. Int J Mol Sci 19:
Blutt, Sarah E; Crawford, Sue E; Ramani, Sasirekha et al. (2018) Engineered Human Gastrointestinal Cultures to Study the Microbiome and Infectious Diseases. Cell Mol Gastroenterol Hepatol 5:241-251
Yu, Wangie; Chen, Yunyun; Dubrulle, Julien et al. (2018) Cisplatin generates oxidative stress which is accompanied by rapid shifts in central carbon metabolism. Sci Rep 8:4306
Mindikoglu, Ayse L; Pappas, Stephen C (2018) Predictors of Response to Terlipressin in Hepatorenal Syndrome. Clin Gastroenterol Hepatol 16:1174

Showing the most recent 10 out of 1121 publications