The Gastrointestinal Experimental Model Systems (GEMS) core is a newly reorganized of the Texas Medical Center-Digestive & Disease Center (TMC-DDC) in 2015. Based on examination of prior usage, reviewer comments from the previous competitive renewal, and the recommendation of the external advisory committee, the GEMS core is organized to encompass 1) an enteroid/organoid subcore and 2) a gnotobiotic subcore. The DDC successfully obtained Baylor College of Medicine (BCM) support to establish a gnotobiotic animal facility during the previous Project Period. This reorganization was based on the exciting scientific developments in the field, our unique expertise, increased DDC investigator need and use of enteroids and gnotobiotic animals in conjunction with decreased use of the physiology services offered by the previous Integrative Biology Core. To accomplish these aims, we will provide services, including the following: ? Human enteroids from the TMC-DDC biobank: as 3-dimensional enteroids, monolayers or transwells ? Murine enteroids from the TMC-DDC biobank ? Complete growth media or components for growth and differentiation of human and animal enteroids ? Derivation of new primary enteroids from animals or human tissue specimens ? Derivation of stably transduced enteroid lines ? Human pluripotent stem cell-derived intestinal organoids, made from embryonic stem cells or iPS cells ? Xenograft generation of enteroids/organoids into immunodeficient mice ? Production and maintenance of germ-free rodents ? Technical services for studies involving gnotobiotic rodents ? Creation of germ-free mice de novo ? Training, outreach, and consultative services Importantly, there is no other similar facility in the TMC or nearby in the region. This Core is highly synergetic with the other scientific cores of the TMC-DDC. For example, extensive cooperation with Core E (Clinical Core) facilitates the development and approval of new IRB protocols and collection/tracking of tissue samples required to establish new human enteroid lines. Evidence of the success of this interaction is apparent in the >120 enteroids lines that are already established and the continued accrual of new samples targeting specific patient populations.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
2P30DK056338-16
Application #
9454077
Study Section
Special Emphasis Panel (ZDK1)
Project Start
Project End
Budget Start
2018-05-01
Budget End
2019-02-28
Support Year
16
Fiscal Year
2018
Total Cost
Indirect Cost
Name
Baylor College of Medicine
Department
Type
DUNS #
051113330
City
Houston
State
TX
Country
United States
Zip Code
77030
Yu, Wangie; Chen, Yunyun; Dubrulle, Julien et al. (2018) Cisplatin generates oxidative stress which is accompanied by rapid shifts in central carbon metabolism. Sci Rep 8:4306
Mindikoglu, Ayse L; Pappas, Stephen C (2018) Predictors of Response to Terlipressin in Hepatorenal Syndrome. Clin Gastroenterol Hepatol 16:1174
Zhou, Yong; Hancock, John F (2018) Electron microscopy combined with spatial analysis: quantitative mapping of the nano-assemblies of plasma membrane-associating proteins and lipids. Biophys Rep 4:320-328
Rajan, Anubama; Vela, Lucy; Zeng, Xi-Lei et al. (2018) Novel Segment- and Host-Specific Patterns of Enteroaggregative Escherichia coli Adherence to Human Intestinal Enteroids. MBio 9:
VanWagner, Lisa B; Kanwal, Fasiha (2018) Hepatology in a changing health care landscape: A call for health services research. Hepatology 68:1154-1162
Zou, Winnie Y; El-Serag, Hashem B; Sada, Yvonne H et al. (2018) Determinants and Outcomes of Hospice Utilization Among Patients with Advance-Staged Hepatocellular Carcinoma in a Veteran Affairs Population. Dig Dis Sci 63:1173-1181
Cash, Brooks D (2018) Understanding and Managing IBS and CIC in the Primary Care Setting. Gastroenterol Hepatol (N Y) 14:3-15
Kennedy, Elizabeth A; King, Katherine Y; Baldridge, Megan T (2018) Mouse Microbiota Models: Comparing Germ-Free Mice and Antibiotics Treatment as Tools for Modifying Gut Bacteria. Front Physiol 9:1534
Collins, J; Robinson, C; Danhof, H et al. (2018) Dietary trehalose enhances virulence of epidemic Clostridium difficile. Nature 553:291-294
Ramani, Sasirekha; Crawford, Sue E; Blutt, Sarah E et al. (2018) Human organoid cultures: transformative new tools for human virus studies. Curr Opin Virol 29:79-86

Showing the most recent 10 out of 1121 publications