- VDDRC CELL IMAGING CORE We are fortunate at Vanderbilt to have one of the leading facilities for microscopic imaging of digestive disease-related processes. Thus, the Vanderbilt Digestive Disease Research Center (VDDRC) will continue to support the VDDRC Cell Imaging Core, operated by the Cell Imaging Shared Resource (CISR), and ensure that VDDRC-affiliated investigators will have full access to state-of-the-art imaging equipment and expert technical support to conduct sophisticated microscopy and analysis of tissue and cellular anatomy and physiology. By utilizing a large, well-established facility, the VDDRC Cell Imaging Core provides high levels of quality control, a dedicated, expert staff and a significant economy of scale for services that would be difficult (if not impossible) for individual investigators to establish and support. This organizational structure fits well with the centralized approach to prevent needless duplication of scientific resources within federally funded research centers, enabling focused development of technology that serves all Vanderbilt research, including VDDRC investigators. The overall goal of the VDDRC Cell Imaging Core is to provide the full range of modern microscopy and digital imaging capabilities and techniques to enable and accelerate digestive disease research at Vanderbilt through three objectives: 1) acquire and maintain state-of-the art optical and EM imaging technology; 2) train, assist, and encourage VDDRC-affiliated investigators to incorporate optical, EM, and in vivo imaging technologies into their research; and 3) develop new imaging technologies that will be useful for digestive disease research. Without VDDRC support, the breadth and quality of advanced microscopy service would be weakened, thus thinning resources available to advance digestive disease research. The VDDRC support grant also reduces the net cost of imaging service to VDDRC investigators and has helped provide financial stability essential to sustain historically high levels of service to VDDRC researchers. This stability has been vital to the successful acquisition of new instruments and services that support VDDRC researchers. During the past 5 years, investigators representing 71 separate VDDRC- affiliated laboratories have used all aspects of the CISR. Over the same period, the CISR initiatives taken to obtain equipment grants, combined with institutional contributions, have provided $4,766,063 in new capital equipment, managed by the CISR, for the benefit of VDDRC investigators. This includes super-resolution, 2- photon-excited fluorescence, multi-excitation TIRF, and other advanced microscopies. The Vanderbilt shared facilities system provides an efficient billing system, oversight and governance for the Cell Imaging Core at no extra cost to VDDRC members. The VDDRC Cell Imaging Core will continue to be a critical component in Vanderbilt's broad range of digestive disease research resources and will provide essential services that support the research of VDDRC-affiliated investigators during the next funding cycle.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK058404-18
Application #
9710647
Study Section
Special Emphasis Panel (ZDK1)
Project Start
Project End
Budget Start
2019-06-01
Budget End
2020-05-31
Support Year
18
Fiscal Year
2019
Total Cost
Indirect Cost
Name
Vanderbilt University Medical Center
Department
Type
DUNS #
079917897
City
Nashville
State
TN
Country
United States
Zip Code
37232
Means, Anna L; Freeman, Tanner J; Zhu, Jing et al. (2018) Epithelial Smad4 Deletion Up-Regulates Inflammation and Promotes Inflammation-Associated Cancer. Cell Mol Gastroenterol Hepatol 6:257-276
Bloodworth, Melissa H; Rusznak, Mark; Pfister, Connor C et al. (2018) Glucagon-like peptide 1 receptor signaling attenuates respiratory syncytial virus-induced type 2 responses and immunopathology. J Allergy Clin Immunol 142:683-687.e12
Feng, Yinnian; Reinherz, Ellis L; Lang, Matthew J (2018) ?? T Cell Receptor Mechanosensing Forces out Serial Engagement. Trends Immunol 39:596-609
Weiss, Vivian L; Kiernan, Colleen; Wright, Jesse et al. (2018) Fine-Needle Aspiration-Based Grading of Pancreatic Neuroendocrine Neoplasms Using Ki-67: Is Accurate WHO Grading Possible on Cytologic Material? J Am Soc Cytopathol 7:154-459
Moon, Jiyun M; Aronoff, David M; Capra, John A et al. (2018) Examination of Signatures of Recent Positive Selection on Genes Involved in Human Sialic Acid Biology. G3 (Bethesda) 8:1315-1325
Lopez, Christopher A; Skaar, Eric P (2018) The Impact of Dietary Transition Metals on Host-Bacterial Interactions. Cell Host Microbe 23:737-748
Roberts, Jordan; Gonzalez, Raul S; Revetta, Frank et al. (2018) Mesenteric tumour deposits arising from small-intestine neuroendocrine tumours are frequently associated with fibrosis and IgG4-expressing plasma cells. Histopathology 73:795-800
Lindsey, Amelia R I; Rice, Danny W; Bordenstein, Sarah R et al. (2018) Evolutionary Genetics of Cytoplasmic Incompatibility Genes cifA and cifB in Prophage WO of Wolbachia. Genome Biol Evol 10:434-451
Singh, Kshipra; Coburn, Lori A; Asim, Mohammad et al. (2018) Ornithine Decarboxylase in Macrophages Exacerbates Colitis and Promotes Colitis-Associated Colon Carcinogenesis by Impairing M1 Immune Responses. Cancer Res 78:4303-4315
Cooke, Allison L; Morris, Jamie; Melchior, John T et al. (2018) A thumbwheel mechanism for APOA1 activation of LCAT activity in HDL. J Lipid Res 59:1244-1255

Showing the most recent 10 out of 1365 publications