? VDDRC MASS SPECTROMETRY (MS) AND PROTEOMICS CORE The MS/Proteomics Core provides cost-effective, state-of-the-art instrumentation and expertise to investigators in the Vanderbilt Digestive Disease Research Center (VDDRC). This core leverages the expert personnel and cutting edge instrument facilities located in the Vanderbilt Mass Spectrometry Research Center (MSRC) to provide specialized services to VDDRC members. This core will be used for identification and quantitation of small molecule metabolites and elements, identification and characterization of proteins, and biomolecular imaging/profiling in tissues. Forty-one (41) VDDRC investigators have used the core extensively during the previous five years for digestive disease related projects. Services used include: analytical method development, assistance with experimental design, quantification of protein expression differences with isotope tagging methods, phosphoproteome characterization, identification of post-translational modifications, elemental analysis by ICP-MS, and bioinformatics analysis. The core develops standard operating procedures, maintains quality control (QC) records on particular assays and instrument performance, and records maintenance history. Core personnel perform assays for investigators and train students and fellows in the theoretical and practical aspects of MS. The small molecule/metabolite component of the core is run as an open-access facility in which users can choose to prepare their samples and operate the instruments. Proteomics samples are submitted to the core for analysis by proteomics staff after consultations between the investigator and core staff on the most appropriate experimental design, sample preparation and instrumental analysis methods. Administrative staff monitors the use of the instrument facilities by investigators and prepare reports on utilization for use by the Administrative Core. The core has 25 mass spectrometers available to users, in addition to specialized instrumentation for advanced analyses.
The Specific Aims of the Core are to: 1) provide high-quality GC/MS, tandem LC/MS, and MALDI/TOF mass spectrometry services for analysis of small molecule metabolites; 2) provide proteomics services for identification and quantification of proteins; 3) provide imaging mass spectrometry services for proteins, lipids and metabolites in tissues; 4) provide analytical expertise in mass spectrometry for assay development and validation; 5) assist users with data analysis; and 6) provide advanced training in bioinformatics of proteomics data; and 7) promote interactions between VDDRC Cores. The overarching goal of the Core is to enhance VDDRC investigator abilities to prevent, diagnose or treat human digestive disease-related disorders.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK058404-18
Application #
9710650
Study Section
Special Emphasis Panel (ZDK1)
Project Start
Project End
Budget Start
2019-06-01
Budget End
2020-05-31
Support Year
18
Fiscal Year
2019
Total Cost
Indirect Cost
Name
Vanderbilt University Medical Center
Department
Type
DUNS #
079917897
City
Nashville
State
TN
Country
United States
Zip Code
37232
Engevik, Amy C; Kaji, Izumi; Engevik, Melinda A et al. (2018) Loss of MYO5B Leads to Reductions in Na+ Absorption With Maintenance of CFTR-Dependent Cl- Secretion in Enterocytes. Gastroenterology 155:1883-1897.e10
Tafreshi, Mona; Guan, Jyeswei; Gorrell, Rebecca J et al. (2018) Helicobacter pylori Type IV Secretion System and Its Adhesin Subunit, CagL, Mediate Potent Inflammatory Responses in Primary Human Endothelial Cells. Front Cell Infect Microbiol 8:22
Rogers, Meredith C; Lamens, Kristina D; Shafagati, Nazly et al. (2018) CD4+ Regulatory T Cells Exert Differential Functions during Early and Late Stages of the Immune Response to Respiratory Viruses. J Immunol 201:1253-1266
Lowry, Mary Allyson; Vaezi, Michael F; Correa, Hernan et al. (2018) Mucosal Impedance Measurements Differentiate Pediatric Patients With Active Versus Inactive Eosinophilic Esophagitis. J Pediatr Gastroenterol Nutr 67:198-203
Pollins, Alonda C; Boyer, Richard B; Nussenbaum, Marlieke et al. (2018) Comparing Processed Nerve Allografts and Assessing Their Capacity to Retain and Release Nerve Growth Factor. Ann Plast Surg 81:198-202
Hebron, Katie E; Li, Elizabeth Y; Arnold Egloff, Shanna A et al. (2018) Alternative splicing of ALCAM enables tunable regulation of cell-cell adhesion through differential proteolysis. Sci Rep 8:3208
Scoville, Elizabeth A; Allaman, Margaret M; Brown, Caroline T et al. (2018) Alterations in Lipid, Amino Acid, and Energy Metabolism Distinguish Crohn's Disease from Ulcerative Colitis and Control Subjects by Serum Metabolomic Profiling. Metabolomics 14:
Ruiz, Rachel M; Sommer, Evan C; Tracy, Dustin et al. (2018) Novel patterns of physical activity in a large sample of preschool-aged children. BMC Public Health 18:242
Bolus, W Reid; Peterson, Kristin R; Hubler, Merla J et al. (2018) Elevating adipose eosinophils in obese mice to physiologically normal levels does not rescue metabolic impairments. Mol Metab 8:86-95
Loh, John T; Beckett, Amber C; Scholz, Matthew B et al. (2018) High-Salt Conditions Alter Transcription of Helicobacter pylori Genes Encoding Outer Membrane Proteins. Infect Immun 86:

Showing the most recent 10 out of 1365 publications