The central aim of this core is to provide optical imaging services for the pulmonary airways and the lung. These studies will rely on a variety of cutting edge microscopic methods to support other physiologic and molecular approaches to study airway dysfunction in CF, injury and potentially therapy to the airway. Therefore a central imaging core is defined as an integral component of this proposal. The Core will be housed in the Center for Biologic Imaging (CBI) of the University of Pittsburgh Medical Center. This Center is equipped to perform a continuum of optical methods including all types of microscopy essential to this Program Project. Within the scope of this Program light microscopic techniques include conventional histological, immuno-histological, laser confocal, and in situ hybridization methods, as well as multiparametric ratiometric methods and live cell and tissue imaging technologies. Our considerable experience in computerized image processing and morphometry will allow quantitative analysis of observed phenomena to corroborate subtle qualitative changes, and this a major function of the Core in this Program. At the electron microscopic level thin section electron microscopy and immuno-electron microscopic evaluation of specimens as a natural extension of the light microscopic analyses will be employed when needed. A second facet of core function is in the development of novel optical imaging methods specifically for this program. This aspect of core function is described in detail in the preliminary data section. The CBI already has extensive established interactions with the project leaders. We expect these interactions to continue to expand within the formal rubric of this program.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK072506-03
Application #
7476389
Study Section
Special Emphasis Panel (ZDK1)
Project Start
2007-08-01
Project End
2010-07-31
Budget Start
2007-08-01
Budget End
2008-07-31
Support Year
3
Fiscal Year
2007
Total Cost
$119,738
Indirect Cost
Name
University of Pittsburgh
Department
Type
DUNS #
004514360
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213
Hvorecny, Kelli L; Dolben, Emily; Moreau-Marquis, Sophie et al. (2018) An epoxide hydrolase secreted by Pseudomonas aeruginosa decreases mucociliary transport and hinders bacterial clearance from the lung. Am J Physiol Lung Cell Mol Physiol 314:L150-L156
Saydmohammed, Manush; Yagi, Hisato; Calderon, Michael et al. (2018) Vertebrate myosin 1d regulates left-right organizer morphogenesis and laterality. Nat Commun 9:3381
Caves, Elizabeth A; Cook, Sarah A; Lee, Nara et al. (2018) Air-Liquid Interface Method To Study Epstein-Barr Virus Pathogenesis in Nasopharyngeal Epithelial Cells. mSphere 3:
Perkins, Lydia A; Fisher, Gregory W; Naganbabu, Matharishwan et al. (2018) High-Content Surface and Total Expression siRNA Kinase Library Screen with VX-809 Treatment Reveals Kinase Targets that Enhance F508del-CFTR Rescue. Mol Pharm 15:759-767
Qu, Yanyan; Olonisakin, Tolani; Bain, William et al. (2018) Thrombospondin-1 protects against pathogen-induced lung injury by limiting extracellular matrix proteolysis. JCI Insight 3:
Tyurina, Yulia Y; Shrivastava, Indira; Tyurin, Vladimir A et al. (2018) ""Only a Life Lived for Others Is Worth Living"": Redox Signaling by Oxygenated Phospholipids in Cell Fate Decisions. Antioxid Redox Signal 29:1333-1358
Lennox, Alison T; Coburn, Stefanie L; Leech, John A et al. (2018) ATP12A promotes mucus dysfunction during Type 2 airway inflammation. Sci Rep 8:2109
Pradhan-Sundd, Tirthadipa; Zhou, Lili; Vats, Ravi et al. (2018) Dual catenin loss in murine liver causes tight junctional deregulation and progressive intrahepatic cholestasis. Hepatology 67:2320-2337
Wen, Xiaoyan; Cui, Liyan; Morrisroe, Seth et al. (2018) A zebrafish model of infection-associated acute kidney injury. Am J Physiol Renal Physiol 315:F291-F299
Preston, G Michael; Guerriero, Christopher J; Metzger, Meredith B et al. (2018) Substrate Insolubility Dictates Hsp104-Dependent Endoplasmic-Reticulum-Associated Degradation. Mol Cell 70:242-253.e6

Showing the most recent 10 out of 146 publications