The critical role of the kidney in maintaining fluid and electrolyte balance, and the disorders of homeostasis that are accompany diseases of the kidney and associated loss of renal function underscore the importance of this organ. Our increasing ability to both identify and modify the gene products that are responsible for maintaining normal homeostatic balance offers new and powerful approaches to examine the contributions of individual proteins to the maintenance of normal renal function and the consequences of loss of renal function. The objective of the Pittsburgh Center for Kidney Research is to both reinforce and expand interactions among investigators at the University of Pittsburgh and colleagues at Mount Sinai School of Medicine who have had a longstanding history of research in areas related to the identification and characterization of cellular processes within the kidney that are associated with normal physiology and with path physiological states, to develop new directions of investigation using electrophysiological, cell biological, molecular, and genetic tools, and to attract new investigators to renal-related research. The Center will be focused on four main cores, which will support the work of investigators at the University of Pittsburgh and Mount Sinai School of Medicine. Core A is a cellular physiology core, led by Dr. Hallows. Core B is a single nephron and metabolomics core, led by Drs. Jackson and Satlin. Core C is a kidney imaging core, led by Dr. Apodaca. Core D will focus on the use of model organisms and is led by Drs. Brodsky and Hukriede. The Center will support four pilot and feasibility projects. An administrative core, led by Drs. Kleyman and Weisz, will provide administrative oversight of the core facilities, the pilot and feasibility project program and the educational activities of the center. All research cores are specifically structured to serve as nation-wide resources for investigators. Our Center is designed to realize our goal of continuing to advance our understanding of normal renal function, of cellular mechanisms that contribute to kidney disease, and of the myriad of altered cellular functions that occur in the setting of renal insufficiency.

Public Health Relevance

The goals of the Pittsburgh Center for Kidney Research are to develop and facilitate multidisciplinary research, training and information transfer related to kidney physiology, cell biology, pharmacology and pathophysiology.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
3P30DK079307-08S1
Application #
9115847
Study Section
Special Emphasis Panel (ZDK1)
Program Officer
Kimmel, Paul
Project Start
2007-07-01
Project End
2016-07-31
Budget Start
2015-08-25
Budget End
2016-07-31
Support Year
8
Fiscal Year
2015
Total Cost
Indirect Cost
Name
University of Pittsburgh
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
004514360
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213
Kleyman, Thomas R; Kashlan, Ossama B; Hughey, Rebecca P (2018) Epithelial Na+ Channel Regulation by Extracellular and Intracellular Factors. Annu Rev Physiol 80:263-281
Hager, Natalie A; Krasowski, Collin J; Mackie, Timothy D et al. (2018) Select ?-arrestins control cell-surface abundance of the mammalian Kir2.1 potassium channel in a yeast model. J Biol Chem 293:11006-11021
Shi, Shujie; Mutchler, Stephanie M; Blobner, Brandon M et al. (2018) Pore-lining residues of MEC-4 and MEC-10 channel subunits tune the Caenorhabditis elegans degenerin channel's response to shear stress. J Biol Chem 293:10757-10766
Birder, Lori A; Kullmann, F Aura (2018) Role of neurogenic inflammation in local communication in the visceral mucosa. Semin Immunopathol 40:261-279
Ziebart, Andreas; Huber, Ulrich; Jeske, Sandra et al. (2018) The influence of chemotherapy on adenosine-producing B cells in patients with head and neck squamous cell carcinoma. Oncotarget 9:5834-5847
Han, Hwa I; Skvarca, Lauren B; Espiritu, Eugenel B et al. (2018) The role of macrophages during acute kidney injury: destruction and repair. Pediatr Nephrol :
Mackie, Timothy D; Kim, Bo-Young; Subramanya, Arohan R et al. (2018) The endosomal trafficking factors CORVET and ESCRT suppress plasma membrane residence of the renal outer medullary potassium channel (ROMK). J Biol Chem 293:3201-3217
Rondon-Berrios, Helbert; Tandukar, Srijan; Mor, Maria K et al. (2018) Urea for the Treatment of Hyponatremia. Clin J Am Soc Nephrol 13:1627-1632
Amengual, Jaume; Guo, Liang; Strong, Alanna et al. (2018) Autophagy Is Required for Sortilin-Mediated Degradation of Apolipoprotein B100. Circ Res 122:568-582
Truschel, Steven T; Clayton, Dennis R; Beckel, Jonathan M et al. (2018) Age-related endolysosome dysfunction in the rat urothelium. PLoS One 13:e0198817

Showing the most recent 10 out of 380 publications