The Kidney Imaging Core is an integral part of the Pittsburgh Center for Kidney Research?s mission to support multidisciplinary and translational research that explores the physiology, pathophysiology, and molecular biology of the kidney. The Kidney Imaging Core complements each of the other Center cores by providing critical information about the amounts, localization, and dynamics of molecules, organelles, cells, and tissues in normal and disease states, and in cell cultures, tissue explants, animal models, and human tissues. The Kidney Imaging Core, along with the University of Pittsburgh Center for Biological Imaging (CBI), supports subcores that are dedicated to imaging urinary tract-associated epithelial cells, performing detailed stereology and three- dimensional tissue and organ reconstruction of the urinary tract, undertaking histopathology studies, and implementing live-cell/tissue/organ imaging studies. In addition, the Imaging Core provides access to human kidney tissues through our collaboration with the Center for Critical Care Medicine Tissue Bank. Cutting-edge imaging resources are available to our users including three-dimensional STED, confocal acquisition using light sheet illumination, high-speed TIRF, and the newest advances in multiphoton imaging. In addition, the Core supports freeze-fracture microscopy, all manner of scanning and transmission electron microscopy, and the latest implementations of tools needed for stereology and histopathology. The Core also provides users with secondary antibodies and access to our Validated Antibody Collection, which includes a growing number of antibodies that are carefully screened for specific binding to antigens and can be used to mark selective cell types in the urinary tract.
The aims of the Core are multifold: (1) to serve as a national center for imaging of kidney- and lower urinary tract-associated cells, tissues, and organs; (2) to support the specialized techniques, methods, and procedures utilized by the investigators that comprise the Pittsburgh Center for Kidney Research; (3) to provide for a higher standard of efficiency and quality control through the Core's ability to conduct procedures on a routine and consistent basis; (4) to transfer Kidney Imaging Core expertise to Center investigators through training mechanisms including distribution of protocols, hands-on training, and mini sabbaticals.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK079307-12
Application #
9752517
Study Section
Special Emphasis Panel (ZDK1)
Project Start
Project End
Budget Start
2019-08-01
Budget End
2020-07-31
Support Year
12
Fiscal Year
2019
Total Cost
Indirect Cost
Name
University of Pittsburgh
Department
Type
DUNS #
004514360
City
Pittsburgh
State
PA
Country
United States
Zip Code
15260
Joshi, Suhasini; Wang, Tai; Araujo, ThaĆ­s L S et al. (2018) Adapting to stress - chaperome networks in cancer. Nat Rev Cancer 18:562-575
Jackson, Edwin K; Gillespie, Delbert G; Mi, Zaichuan et al. (2018) Adenosine Receptors Influence Hypertension in Dahl Salt-Sensitive Rats: Dependence on Receptor Subtype, Salt Diet, and Sex. Hypertension 72:511-521
Wen, Xiaoyan; Cui, Liyan; Morrisroe, Seth et al. (2018) A zebrafish model of infection-associated acute kidney injury. Am J Physiol Renal Physiol 315:F291-F299
Kullmann, F Aura; Beckel, Jonathan M; McDonnell, Bronagh et al. (2018) Involvement of TRPM4 in detrusor overactivity following spinal cord transection in mice. Naunyn Schmiedebergs Arch Pharmacol 391:1191-1202
Kullmann, F A; Chang, H H; Gauthier, C et al. (2018) Serotonergic paraneurones in the female mouse urethral epithelium and their potential role in peripheral sensory information processing. Acta Physiol (Oxf) 222:
Espiritu, Eugenel B; Crunk, Amanda E; Bais, Abha et al. (2018) The Lhx1-Ldb1 complex interacts with Furry to regulate microRNA expression during pronephric kidney development. Sci Rep 8:16029
Preston, G Michael; Guerriero, Christopher J; Metzger, Meredith B et al. (2018) Substrate Insolubility Dictates Hsp104-Dependent Endoplasmic-Reticulum-Associated Degradation. Mol Cell 70:242-253.e6
Sannino, Sara; Guerriero, Christopher J; Sabnis, Amit J et al. (2018) Compensatory increases of select proteostasis networks after Hsp70 inhibition in cancer cells. J Cell Sci 131:
Gallo, Luciana I; Dalghi, Marianela G; Clayton, Dennis R et al. (2018) RAB27B requirement for stretch-induced exocytosis in bladder umbrella cells. Am J Physiol Cell Physiol 314:C349-C365
Kharade, Sujay V; Kurata, Haruto; Bender, Aaron M et al. (2018) Discovery, Characterization, and Effects on Renal Fluid and Electrolyte Excretion of the Kir4.1 Potassium Channel Pore Blocker, VU0134992. Mol Pharmacol 94:926-937

Showing the most recent 10 out of 380 publications