The Optical Morphology Core will play an essential role in supporting the overall goals of the Center.
The Specific Aims of this core are three-fold. First, to provide reliable, accessible, and state-of-the-art microscopic technology to all Center members that will facilitate their study of Gl cellular signaling cascades. Second, to educate and train Center members in the use of both basic and sophisticated cellular imaging methods. Emphasis will be placed on providing technical instruction as well as educating faculty about how such approaches can expand the scope and breadth of their scientific programs. Third, development and application of state-of-the-art optical imaging technologies to Gl tissues/cells including;high resolution, real-time computer/video imaging of live cells;confocal microscopy coupled with computer-based 3-D image reconstruction;Fluorescence Resonance Energy Transfer (FRET) applications to measure dynamic protein-protein interactions;Fluorescence Recovery After Photobleaching (FRAP) that allows the quantitation of protein recruitment/turnover;expression and use of fluorescence-based bioprobes that facilitates the study and localization of specific signaling molecules including both proteins and lipids;and the development and application of specific photoactivatable caged-compounds that allow a precise temporal and spatial activation of desired signaling molecules in live cells.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK084567-02
Application #
8119014
Study Section
Special Emphasis Panel (ZDK1)
Project Start
Project End
Budget Start
2010-09-01
Budget End
2011-08-31
Support Year
2
Fiscal Year
2010
Total Cost
$231,466
Indirect Cost
Name
Mayo Clinic, Rochester
Department
Type
DUNS #
006471700
City
Rochester
State
MN
Country
United States
Zip Code
55905
Bandla, Harikrishna; Dasgupta, Debanjali; Mauer, Amy S et al. (2018) Deletion of endoplasmic reticulum stress-responsive co-chaperone p58IPK protects mice from diet-induced steatohepatitis. Hepatol Res 48:479-494
Guicciardi, Maria Eugenia; Trussoni, Christy E; Krishnan, Anuradha et al. (2018) Macrophages contribute to the pathogenesis of sclerosing cholangitis in mice. J Hepatol 69:676-686
Mouchli, Mohamad A; Singh, Siddharth; Boardman, Lisa et al. (2018) Natural History of Established and De Novo Inflammatory Bowel Disease After Liver Transplantation for Primary Sclerosing Cholangitis. Inflamm Bowel Dis 24:1074-1081
Paradise, Brooke D; Barham, Whitney; Fernandez-Zapico, Martín E (2018) Targeting Epigenetic Aberrations in Pancreatic Cancer, a New Path to Improve Patient Outcomes? Cancers (Basel) 10:
Banales, Jesus M; Marzioni, Marco; LaRusso, Nicholas F et al. (2018) Cholangiocytes in health and disease: From basic science to novel treatments. Biochim Biophys Acta Mol Basis Dis 1864:1217-1219
Tarragó, Mariana G; Chini, Claudia C S; Kanamori, Karina S et al. (2018) A Potent and Specific CD38 Inhibitor Ameliorates Age-Related Metabolic Dysfunction by Reversing Tissue NAD+ Decline. Cell Metab 27:1081-1095.e10
Kim, Minsoo; Druliner, Brooke R; Vasmatzis, Nikolaos et al. (2018) Inferring modes of evolution from colorectal cancer with residual polyp of origin. Oncotarget 9:6780-6792
Druliner, Brooke R; Wang, Panwen; Bae, Taejeong et al. (2018) Molecular characterization of colorectal adenomas with and without malignancy reveals distinguishing genome, transcriptome and methylome alterations. Sci Rep 8:3161
Mansini, Adrian P; Lorenzo Pisarello, Maria J; Thelen, Kristen M et al. (2018) MicroRNA (miR)-433 and miR-22 dysregulations induce histone-deacetylase-6 overexpression and ciliary loss in cholangiocarcinoma. Hepatology 68:561-573
Moncsek, Anja; Al-Suraih, Mohammed S; Trussoni, Christy E et al. (2018) Targeting senescent cholangiocytes and activated fibroblasts with B-cell lymphoma-extra large inhibitors ameliorates fibrosis in multidrug resistance 2 gene knockout (Mdr2-/- ) mice. Hepatology 67:247-259

Showing the most recent 10 out of 537 publications