The goal of the Mayo Clinic Center for Cell Signaling in Gastroenterology (C-SiG) is to connect discovery, translational, and patient-oriented investigators to enhance understanding and therapeutically exploit signaling pathways in gastrointestinal cells to improve the health of patients with digestive diseases. The Research Base consists of 59 scientists and $23 million (direct costs, 70% growth) in digestive disease-related funding. C-SiG members are organized into three Mechanistic Research Themes: 1) Ion channels/membrane receptors; ii) Signal transduction; and, iii) Genetics and gene regulation. Our CENTRAL HYPOTHESIS is that advances in clinical care of patients with digestive diseases requires a facilitative infrastructure supporting meaningful interactions among multidisciplinary scientists investigating cellular mechanisms, pathways and therapeutic targets to enhance rapid translation of basic discoveries into clinical trials. C-SiG's OVERALL SPECIFIC AIMS are to: i) Foster multidisciplinary research by expanding technical and collaborative capabilities of established Gl scientists and attracting investigators from other disciplines; li) Develop and implement a robust Scientific Enrichment Program that includes seminars, workshops, symposia, a visiting faculty program, mini-sabbatical, and Web-based curricula; iii) Offer specialized equipment, technologies, methodologies, reagents, and expertise to assist C-SiG members through the C-SiG Cores, including: a) State-of-the-art microscopic technology and consultative expertise (Optical Microscopy Core); b) Accelerated and expanded biospecimen acquisition, processing, and annotation (Clinical Core); c) Emerging genetic technologies and model systems (Genetics and Model Systems Core); iv) Identify and nurture new GI investigators via a peer-reviewed Pilot and Feasibility Program; v) Promote synergistic interactions between C-SiG members and other Gl investigators at Mayo and at other Gl centers to facilitate clinical trials resulting from the identification of cellular therapeutic targets; vi) Share technologies with other NIDDK centers at Mayo (e.g., PKD Center) and existing Digestive Disease Research Core Centers, especially in the Midwest (i.e.. Midwest DDRCC Alliance).

Public Health Relevance

Gastrointestinal diseases and their complications have a significant effect on public health and health care utilization costs. Research supported by this Center grant, is critically important for furthering understanding of the mechanisms that underlie digestive diseases, which can lead to practical applications for the diagnosis, prevention, monitoring and treatment of human disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK084567-09
Application #
9338039
Study Section
Special Emphasis Panel (ZDK1)
Program Officer
Perrin, Peter J
Project Start
2009-09-01
Project End
2019-08-31
Budget Start
2017-09-01
Budget End
2018-08-31
Support Year
9
Fiscal Year
2017
Total Cost
Indirect Cost
Name
Mayo Clinic, Rochester
Department
Type
DUNS #
006471700
City
Rochester
State
MN
Country
United States
Zip Code
55905
Mansini, Adrian P; Lorenzo Pisarello, Maria J; Thelen, Kristen M et al. (2018) MicroRNA (miR)-433 and miR-22 dysregulations induce histone-deacetylase-6 overexpression and ciliary loss in cholangiocarcinoma. Hepatology 68:561-573
Moncsek, Anja; Al-Suraih, Mohammed S; Trussoni, Christy E et al. (2018) Targeting senescent cholangiocytes and activated fibroblasts with B-cell lymphoma-extra large inhibitors ameliorates fibrosis in multidrug resistance 2 gene knockout (Mdr2-/- ) mice. Hepatology 67:247-259
Allen, Alina M; Shah, Vijay H; Therneau, Terry M et al. (2018) The role of 3D-MRE in the diagnosis of NASH in obese patients undergoing bariatric surgery. Hepatology :
Dhanasekaran, Renumathy; Nault, Jean-Charles; Roberts, Lewis R et al. (2018) Genomic Medicine and Implications for Hepatocellular Carcinoma Prevention and Therapy. Gastroenterology :
Sugihara, Takaaki; Werneburg, Nathan W; Hernandez, Matthew C et al. (2018) YAP Tyrosine Phosphorylation and Nuclear Localization in Cholangiocarcinoma Cells Are Regulated by LCK and Independent of LATS Activity. Mol Cancer Res 16:1556-1567
Rizvi, Sumera; Fischbach, Samantha R; Bronk, Steven F et al. (2018) YAP-associated chromosomal instability and cholangiocarcinoma in mice. Oncotarget 9:5892-5905
Anderson, Bradley W; Suh, Yun-Suhk; Choi, Boram et al. (2018) Detection of Gastric Cancer with Novel Methylated DNA Markers: Discovery, Tissue Validation, and Pilot Testing in Plasma. Clin Cancer Res 24:5724-5734
Rizvi, Sumera; Khan, Shahid A; Hallemeier, Christopher L et al. (2018) Cholangiocarcinoma - evolving concepts and therapeutic strategies. Nat Rev Clin Oncol 15:95-111
Mouchli, Mohamad A; Ouk, Lidia; Scheitel, Marianne R et al. (2018) Colonoscopy surveillance for high risk polyps does not always prevent colorectal cancer. World J Gastroenterol 24:905-916
Allen, Alina M; Therneau, Terry M; Larson, Joseph J et al. (2018) Nonalcoholic fatty liver disease incidence and impact on metabolic burden and death: A 20 year-community study. Hepatology 67:1726-1736

Showing the most recent 10 out of 537 publications