? M&I CORE The Microscopy and Imaging Analysis (M&I) core is the major component of the vision research core at UCLA, with 18 research laboratories projecting moderate or extensive usage. The M&I core facilities have been revamped in terms of both new laboratories and new equipment. The core is now housed in dedicated core space that was completely renovated. Over the past two years, a new JEOL JEM 1400plus electron microscope, a new Deltavision OMX super resolution microscope, and a new Nikon spinning disk confocal microscope were purchased, and are now all up and running, providing users with state-of-the-art imaging. The M&I core is equipped with facilities and equipment for: 1) sample preparation, including the preservation of tissue to be studied in a fixed state, sectioning (from thick to ultrathin), and the preparation of live tissues for live-cell imaging; 2) many different forms of imaging capabilities, from light to super resolution to EM; 3) image analysis, with a software suite, including Imaris. Thus, together with technical support in all aspects, the core provides users facilities, assistance, and training in sample preparation, imaging and image acquisition, and image analysis. The M&I core thus facilitates basic and preclinical research supported by NIH/NEI on UCLA campus by providing access to facilities, equipment, and technical skills that cannot be found in individual laboratories.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Center Core Grants (P30)
Project #
2P30EY000331-53
Application #
10020827
Study Section
Special Emphasis Panel (ZEY1)
Project Start
1997-03-01
Project End
2025-06-30
Budget Start
2020-08-01
Budget End
2021-07-31
Support Year
53
Fiscal Year
2020
Total Cost
Indirect Cost
Name
University of California Los Angeles
Department
Type
DUNS #
092530369
City
Los Angeles
State
CA
Country
United States
Zip Code
90095
Van Eps, Ned; Altenbach, Christian; Caro, Lydia N et al. (2018) Gi- and Gs-coupled GPCRs show different modes of G-protein binding. Proc Natl Acad Sci U S A 115:2383-2388
Shin, Andrew; Park, Joseph; Demer, Joseph L (2018) Opto-mechanical characterization of sclera by polarization sensitive optical coherence tomography. J Biomech 72:173-179
Volland, Stefanie; Williams, David S (2018) Preservation of Photoreceptor Nanostructure for Electron Tomography Using Transcardiac Perfusion Followed by High-Pressure Freezing and Freeze-Substitution. Adv Exp Med Biol 1074:603-607
Kintzer, Alexander F; Green, Evan M; Dominik, Pawel K et al. (2018) Structural basis for activation of voltage sensor domains in an ion channel TPC1. Proc Natl Acad Sci U S A 115:E9095-E9104
Bergdoll, Lucie A; Lerch, Michael T; Patrick, John W et al. (2018) Protonation state of glutamate 73 regulates the formation of a specific dimeric association of mVDAC1. Proc Natl Acad Sci U S A 115:E172-E179
Vahedi, Farnoosh; Chung, Doug D; Gee, Katherine M et al. (2018) Epithelial Recurrent Erosion Dystrophy Secondary to COL17A1 c.3156C>T Mutation in a Non-white Family. Cornea 37:909-911
Zhang, Xiang-Mei; Hashimoto, Takao; Tang, Ronald et al. (2018) Elevated expression of human bHLH factor ATOH7 accelerates cell cycle progression of progenitors and enhances production of avian retinal ganglion cells. Sci Rep 8:6823
Chaudhuri, Zia; Demer, Joseph L (2018) Long-term Surgical Outcomes in the Sagging Eye Syndrome. Strabismus 26:6-10
Esteve-Rudd, Julian; Hazim, Roni A; Diemer, Tanja et al. (2018) Defective phagosome motility and degradation in cell nonautonomous RPE pathogenesis of a dominant macular degeneration. Proc Natl Acad Sci U S A 115:5468-5473
Morshedian, Ala; Woodruff, Michael L; Fain, Gordon L (2018) Role of recoverin in rod photoreceptor light adaptation. J Physiol 596:1513-1526

Showing the most recent 10 out of 289 publications