Flow Cytometry Module Abstract The objective of the Flow Cytometry Module is to enhance the capabilities of individual investigators to conduct cutting edge research in the vision sciences.
Our Aims are: 1) to provide resources, support and training required to utilize flow cytometry for phenotypic and functional analyses of cells from ocular tissues at the level exceeding the capabilities of any individual laboratory; 2) to promote collegiality across the community of vision scientists through sharing resources, techniques and expertise; and 3) to engage colleagues into conducting vision research, including support of the next generation of basic and clinician scientists.
These Aims will be achieved through support of a sophisticated facility equipped with a state-of-the- art flow cytometer and data analysis software. This facility is supervised and operated by highly experienced specialists, who provide expertise and support in cell preparation, data acquisition, analysis and interpretation. These shared resources will open new research possibilities for both experienced and novice users, and will serve as a platform for fostering interactions among a broad swath of our research community.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Center Core Grants (P30)
Project #
5P30EY005722-32
Application #
9346069
Study Section
Special Emphasis Panel (ZEY1)
Project Start
Project End
Budget Start
2017-09-01
Budget End
2018-08-31
Support Year
32
Fiscal Year
2017
Total Cost
Indirect Cost
Name
Duke University
Department
Type
DUNS #
044387793
City
Durham
State
NC
Country
United States
Zip Code
27705
Smit-McBride, Zeljka; Nguyen, Johnny; Elliott, Garrett W et al. (2018) Effects of aging and environmental tobacco smoke exposure on ocular and plasma circulatory microRNAs in the Rhesus macaque. Mol Vis 24:633-646
Lobanova, Ekaterina S; Finkelstein, Stella; Li, Jing et al. (2018) Increased proteasomal activity supports photoreceptor survival in inherited retinal degeneration. Nat Commun 9:1738
Parolini, Barbara; Grewal, Dilraj S; Pinackatt, Sajish J et al. (2018) COMBINED AUTOLOGOUS TRANSPLANTATION OF NEUROSENSORY RETINA, RETINAL PIGMENT EPITHELIUM, AND CHOROID FREE GRAFTS. Retina 38 Suppl 1:S12-S22
Malek, Goldis; Busik, Julia; Grant, Maria B et al. (2018) Models of retinal diseases and their applicability in drug discovery. Expert Opin Drug Discov 13:359-377
Choudhary, Mayur; Safe, Stephen; Malek, Goldis (2018) Suppression of aberrant choroidal neovascularization through activation of the aryl hydrocarbon receptor. Biochim Biophys Acta Mol Basis Dis 1864:1583-1595
Toomey, Christopher B; Landowski, Michael; Klingeborn, Mikael et al. (2018) Effect of Anti-C5a Therapy in a Murine Model of Early/Intermediate Dry Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 59:662-673
Travis, Amanda M; Heflin, Stephanie J; Hirano, Arlene A et al. (2018) Dopamine-Dependent Sensitization of Rod Bipolar Cells by GABA Is Conveyed through Wide-Field Amacrine Cells. J Neurosci 38:723-732
Toomey, Christopher B; Johnson, Lincoln V; Bowes Rickman, Catherine (2018) Complement factor H in AMD: Bridging genetic associations and pathobiology. Prog Retin Eye Res 62:38-57
Hirt, Joshua; Porter, Kris; Dixon, Angela et al. (2018) Contribution of autophagy to ocular hypertension and neurodegeneration in the DBA/2J spontaneous glaucoma mouse model. Cell Death Discov 4:14
Ban, Norimitsu; Lee, Tae Jun; Sene, Abdoulaye et al. (2018) Impaired monocyte cholesterol clearance initiates age-related retinal degeneration and vision loss. JCI Insight 3:

Showing the most recent 10 out of 437 publications