We propose to build on the success of COBRE phase I and phase II awards to establish four research cores that will provide the infrastructure to take our Center to the next level. In addition, COBRE III will provide a mechanism for pilot research projects to continue to develop vibrant teams of investigators in biomaterials research. Significant biomedical therapies are likely to emerge from novel biomaterials that are designed at the molecular level to offer customized control over mechanical and biological properties. The realization of such biomaterials requires synergy between diverse research communities of organic chemistry, molecular design, biochemistry, biology, biophysical chemistry, and materials engineering. Collaborations between an outstanding group of junior, mid-career and senior investigators spanning multiple units across campus were established during phase I and phase II COBRE awards and will be extended in COBRE III. We propose four specific aims for COBRE III: i) to develop state-of-the-art self-sustained research instrumentation cores (Nuclear Magnetic Resonance;Mass Spectrometry and Surface Characterization;Microscopy and Mechanical Testing;and Computational Modeling) that will be integrated into campus-wide infrastructure;ii) to establish a pilot research subproject program that will enable the PIs to initiate new research directions, to bring new junior investigators to the COBRE program, and to promote new collaborations;iii) to establish COBRE-supported symposia and meetings (an annual research and coordination retreat, and co-sponsored lectures in biomaterials);and iv) to establish a COBRE faculty mentoring program.
These aims will further the development of a cadre of NIH ROI funded investigators whose cutting-edge biomaterial research programs will provide continuing support for the core facilities that are a crucial for regenerative medicine research at the University of Delaware.

Public Health Relevance

The objective of our COBRE research is the molecular design of advanced biomaterials to address societal needs, including those for regeneration of liver and vocal fold tissues, for drug-lead identification, and payload delivery. This research, by a multi-disciplinary team of researchers from basic and translational science backgrounds, will be extended and deepened in COBRE Phase III.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Center Core Grants (P30)
Project #
1P30GM110758-01
Application #
8710695
Study Section
Special Emphasis Panel (ZGM1-TWD-C (C3))
Program Officer
Canto, Maria Teresa
Project Start
2014-09-30
Project End
2019-07-31
Budget Start
2014-09-30
Budget End
2015-07-31
Support Year
1
Fiscal Year
2014
Total Cost
$1,170,000
Indirect Cost
$420,000
Name
University of Delaware
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
059007500
City
Newark
State
DE
Country
United States
Zip Code
19716
He, Chuan; Teplyakov, Andrew V (2018) 29,31- H Phthalocyanine Covalently Bonded Directly to a Si(111) Surface Retains Its Metalation Ability. Langmuir 34:10880-10888
Dick, Robert A; Zadrozny, Kaneil K; Xu, Chaoyi et al. (2018) Inositol phosphates are assembly co-factors for HIV-1. Nature 560:509-512
Macdougall, Laura J; Wiley, Katherine L; Kloxin, April M et al. (2018) Design of synthetic extracellular matrices for probing breast cancer cell growth using robust cyctocompatible nucleophilic thiol-yne addition chemistry. Biomaterials 178:435-447
Drolen, Claire; Conklin, Eric; Hetterich, Stephen J et al. (2018) pH-Driven Mechanistic Switching from Electron Transfer to Energy Transfer between [Ru(bpy)3]2+ and Ferrocene Derivatives. J Am Chem Soc 140:10169-10178
Dicker, K T; Song, J; Moore, A C et al. (2018) Core-shell patterning of synthetic hydrogels via interfacial bioorthogonal chemistry for spatial control of stem cell behavior. Chem Sci 9:5394-5404
Sawicki, Lisa A; Choe, Leila H; Wiley, Katherine L et al. (2018) Isolation and Identification of Proteins Secreted by Cells Cultured within Synthetic Hydrogel-Based Matrices. ACS Biomater Sci Eng 4:836-845
Duan, Yichen; Rani, Sana; Newberg, John T et al. (2018) Investigation of the influence of oxygen plasma on supported silver nanoparticles. J Vac Sci Technol A 36:01B101
Sallam, Sahar; Dolog, Ivan; Paik, Bradford A et al. (2018) Sequence and Conformational Analysis of Peptide-Polymer Bioconjugates by Multidimensional Mass Spectrometry. Biomacromolecules 19:1498-1507
Wang, Mingzhang; Lu, Manman; Fritz, Matthew P et al. (2018) Fast Magic-Angle Spinning 19 F?NMR Spectroscopy of HIV-1 Capsid Protein Assemblies. Angew Chem Int Ed Engl 57:16375-16379
Sutherland, Bryan P; El-Zaatari, Bassil M; Halaszynski, Nicole I et al. (2018) On-Resin Macrocyclization of Peptides Using Vinyl Sulfonamides as a Thiol-Michael ""Click"" Acceptor. Bioconjug Chem :

Showing the most recent 10 out of 177 publications