The Baylor College of Medicine (BCM) Intellectual and Developmental Disabilities Research Center (IDDRC) was established on August 1, 1988 and has been continuously funded with the last renewal of funding dated July 1, 2004. The specific objectives are: 1) To enhance intellectual disabilities activities at BCM by encouraging and focusing research efforts on etiology, diagnosis, prevention, pathogenesis, and intervention of IDD. 2) To continue to promote a multidisciplinary approach to IDD research by improving interactions among Center investigators, and by continuing to develop and to apply leading edge technologies. 3) To enhance the productivity of project investigators through effective and efficient research core units and to facilitate translational research efforts. 4) To recruit new investigators into the field of IDD research through scientific interactions with center investigators and by providing the infrastructure for a multidisciplinary approach through the BCM-IDDRC Cores. 5) To promote scientific and collaborative interactions with investigators outside Baylor who have demonstrated a major commitment to study and treat IDD. The research projects will be supported by the Administrative Core (A), and by seven research cores: High Throughput Genomic &RNA Analysis (B), Genome-Wide RNAi Analysis (C), Gene Expression Analysis which includes Neuropathology, Confocal, and RNA in situ (D), Tissue Culture (E), Stem Cell (F), Mouse Neurobehavior (G), and Mouse Physiology (H). There are 48 faculty participants, including 41 research project investigators and 73 research projects. The scope of research at the BCM-IDDRC will include the following ten topic areas: 1) Neurobiology, cellular &molecular aspects of brain development;2) Inborn errors of metabolism;3) Genetic &epigenetic basis of diseases;4) Innovative technologies for diagnosis &screening IDD;5) Animal models for pathogenesis &for developing and testing therapeutics;6) Pathways that affect function of nervous system;7) Molecular, behavioral &therapeutic studies in IDD including fragile X, Angelman, Prader-Willi, and Rett syndromes;8) Definition of clinical phenotypes in genetically diagnosed populations;9) Studies of aggression, social behavioral problems and stereotypies;and 10) Neurobiology, genetics, pathogenesis &pharmacological approaches in autism spectrum disorders.

Public Health Relevance

The overall goals of the Baylor IDDRC are to identify as many causes of intellectual and developmental disabilities as possible, to prevent these disorders, and to provide interventional schemes that can improve the quality of life of afflicted individuals and ameliorate their disability whenever possible.

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Center Core Grants (P30)
Project #
5P30HD024064-24
Application #
8318656
Study Section
Special Emphasis Panel (ZHD1-MRG-C (16))
Program Officer
Parisi, Melissa
Project Start
1997-08-01
Project End
2014-06-30
Budget Start
2012-07-01
Budget End
2013-06-30
Support Year
24
Fiscal Year
2012
Total Cost
$2,640,155
Indirect Cost
$685,796
Name
Baylor College of Medicine
Department
Genetics
Type
Schools of Medicine
DUNS #
051113330
City
Houston
State
TX
Country
United States
Zip Code
77030
Kho, Jordan; Tian, Xiaoyu; Wong, Wing-Tak et al. (2018) Argininosuccinate Lyase Deficiency Causes an Endothelial-Dependent Form of Hypertension. Am J Hum Genet 103:276-287
Eblimit, Aiden; Zaneveld, Smriti Agrawal; Liu, Wei et al. (2018) NMNAT1 E257K variant, associated with Leber Congenital Amaurosis (LCA9), causes a mild retinal degeneration phenotype. Exp Eye Res 173:32-43
Lanzieri, Tatiana M; Chung, Winnie; Leung, Jessica et al. (2018) Hearing Trajectory in Children with Congenital Cytomegalovirus Infection. Otolaryngol Head Neck Surg 158:736-744
Madan, Simran; Kron, Bettina; Jin, Zixue et al. (2018) Arginase overexpression in neurons and its effect on traumatic brain injury. Mol Genet Metab 125:112-117
De Maio, Antonia; Yalamanchili, Hari Krishna; Adamski, Carolyn J et al. (2018) RBM17 Interacts with U2SURP and CHERP to Regulate Expression and Splicing of RNA-Processing Proteins. Cell Rep 25:726-736.e7
Reeber, Stacey L; Arancillo, Marife; Sillitoe, Roy V (2018) Bergmann Glia are Patterned into Topographic Molecular Zones in the Developing and Adult Mouse Cerebellum. Cerebellum 17:392-403
Gillentine, Madelyn A; Lupo, Philip J; Stankiewicz, Pawel et al. (2018) An estimation of the prevalence of genomic disorders using chromosomal microarray data. J Hum Genet 63:795-801
Lim, Joohyun; Grafe, Ingo; Alexander, Stefanie et al. (2017) Genetic causes and mechanisms of Osteogenesis Imperfecta. Bone 102:40-49
Lin, Yu-Hsuan; Jewell, Brittany E; Gingold, Julian et al. (2017) Osteosarcoma: Molecular Pathogenesis and iPSC Modeling. Trends Mol Med 23:737-755
Joeng, Kyu Sang; Lee, Yi-Chien; Lim, Joohyun et al. (2017) Osteocyte-specific WNT1 regulates osteoblast function during bone homeostasis. J Clin Invest 127:2678-2688

Showing the most recent 10 out of 709 publications