This core will provide tissue culture and animal models for CHAIN investigators. The objectives of this core are to isolate and propagate primary human leukocytes (monocytes and peripheral blood lymphocytes and to provide rodent and primate models of CHAIN. Rigorous quality control measures are in place for this well integrated core. Primary human leukocytes will be fractionated into monocytes and lymphocytes from HIV-1, 2 and hepatitis B and C seronegative donors by centrifugal elutriation. Human glia (microglia and astrocytes) and/or neurons will be obtained from fetal tissues. The neurons and glia from human brain tissue will be purified, characterized and provided for experiments. These will provide data for common endpoints of disease. In toto, this 'cell, fissue, and animal core'will provide all the biological specimens necessary to address research objectives of the center research programs and utilize the carefully controlled specimens obtained through this infrastructure to invesfigate neural immunity and its links to CHAIN. The techniques in the Core as a whole will also support neuroimmunological studies relevant to microglial activation in CHAIN. The results obtained from this core will have direct applicability for determining the mechanisms and monitoring the course of HIV infection in its chronic stage. Our overriding goal is to assist CHAIN Pis and other researchers interested in neuroAIDS in determining and characterizing changes of CNS function as they develop in the various in vitro and in vivo models of neuroAIDS, and in exploring therapeutic potentials aiming at ameliorating or reversing such functional changes

Public Health Relevance

This core will provide tissue culture and animal models for the center investigators. The objecfives are to isolate and propagate primary human cells and to provide established animal models of chronic HIV infection and aging. This core will provide all the biological specimens necessary to address research objectives of the center activities to investigate neural immunity and its links to NeuroAIDS, and thus vital component for achieving our overriding goal: To explore therapeutic potentials aiming at ameliorafing or reversing such functional changes.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Center Core Grants (P30)
Project #
3P30MH062261-12S1
Application #
8511862
Study Section
Special Emphasis Panel (ZMH1-ERB-M)
Project Start
Project End
Budget Start
2012-07-03
Budget End
2013-02-28
Support Year
12
Fiscal Year
2012
Total Cost
$11,250
Indirect Cost
$3,674
Name
University of Nebraska Medical Center
Department
Type
DUNS #
168559177
City
Omaha
State
NE
Country
United States
Zip Code
68198
Guijas, Carlos; Montenegro-Burke, J Rafael; Warth, Benedikt et al. (2018) Metabolomics activity screening for identifying metabolites that modulate phenotype. Nat Biotechnol 36:316-320
Kevadiya, Bhavesh D; Woldstad, Christopher; Ottemann, Brendan M et al. (2018) Multimodal Theranostic Nanoformulations Permit Magnetic Resonance Bioimaging of Antiretroviral Drug Particle Tissue-Cell Biodistribution. Theranostics 8:256-276
McMillan, JoEllyn; Szlachetka, Adam; Slack, Lara et al. (2018) Pharmacokinetics of a Long-Acting Nanoformulated Dolutegravir Prodrug in Rhesus Macaques. Antimicrob Agents Chemother 62:
Sillman, Brady; Woldstad, Christopher; Mcmillan, Joellyn et al. (2018) Neuropathogenesis of human immunodeficiency virus infection. Handb Clin Neurol 152:21-40
Dave, Rajnish S; Jain, Pooja; Byrareddy, Siddappa N (2018) Functional Meningeal Lymphatics and Cerebrospinal Fluid Outflow. J Neuroimmune Pharmacol 13:123-125
Dyavar, Shetty Ravi; Ye, Zhen; Byrareddy, Siddappa N et al. (2018) Normalization of cell associated antiretroviral drug concentrations with a novel RPP30 droplet digital PCR assay. Sci Rep 8:3626
Ottemann, Brendan M; Helmink, Austin J; Zhang, Wenting et al. (2018) Bioimaging predictors of rilpivirine biodistribution and antiretroviral activities. Biomaterials 185:174-193
Brenza, Timothy M; Schlichtmann, Benjamin W; Bhargavan, Biju et al. (2018) Biodegradable polyanhydride-based nanomedicines for blood to brain drug delivery. J Biomed Mater Res A 106:2881-2890
Sathyanesan, Monica; Watt, Michael J; Haiar, Jacob M et al. (2018) Carbamoylated erythropoietin modulates cognitive outcomes of social defeat and differentially regulates gene expression in the dorsal and ventral hippocampus. Transl Psychiatry 8:113
Zhou, Tian; Su, Hang; Dash, Prasanta et al. (2018) Creation of a nanoformulated cabotegravir prodrug with improved antiretroviral profiles. Biomaterials 151:53-65

Showing the most recent 10 out of 374 publications