Neurophysiologic measures of brain electrical activity, oxygenation state, temperature, and blood perfusion critically reflect brain function and health and provide important mechanistic insight for MR studies. Appropriate utilization of these neurophysiologic measures in conjunction with MR requires substantial expertise with suitable physiological monitoring and control of animals. The overall goal of Core 3 is to support integration of state-of-the-art neurophysiological measurements with MR studies in NINDS and related NIH-supported clinical and basic neuroscience research. In the last cycle, we achieved this aim by developing and implementing a wide array of optical and electrical measurement methods including extracellular recordings (single microelectrodes, electrode arrays), tissue oxygenation (pO2) with phosphorescence quenching, temperature monitoring with thermocouple wires, and blood flow with laser Doppler flowmetry. The qualifying user group of Core 3 consists of 7 Pis funded by NINDS who along with 11 other NIH-funded Pis use multimodal neurophysiology and other cross-modal methods to address fundamental questions in basic and clinical neuroscience. The impact of Core 3 on the Yale neuroscience community is demonstrated by the support it provided to 15 NIH grants and 7 new research initiatives that led to grants and papers, the training in advanced neurophysiology methods provided to 5 young neuroscientists (3 in NINDS PI laboratories), and the use of Core resources in 33 papers that led to 355 citations (for Core 3 alone this represents 30% of the total citations for 106 papers for all Cores). For the next cycle, we will continue to implement, maintain, and support innovative multi-modal neurophysiology methods for Core 3 users, support new research initiatives, train and provide mentorship for neuroscience Pis and their personnel for Core 3 usage, integrate synergistic use of MR/neurophysiological measurements and project-specific data analysis, implement new Core 3 methods to support neuroscience Pis, and track Core 3 activities and disseminate/share resources to NIH community. The newly implemented applications will include utilizing multi-electrode arrays and laser speckle methods to support cross-disciplinary MR studies.
for Core 3 Neurophysiologic measures of brain electrical activity, oxygenation state, temperature, and blood perfusion critically reflect brain function and health and complement magnetic resonance (MR) studies. Appropriate utilization of these neurophysiologic measures in conjunction with MR requires substantial expertise with suitable physiological monitoring and control of animals. Core 3 will support integration of state-of-the-art neurophysiology to advance NIH-supported projects of direct relevance to public health.
Benveniste, Helene; Dienel, Gerald; Jacob, Zvi et al. (2018) Trajectories of Brain Lactate and Re-visited Oxygen-Glucose Index Calculations Do Not Support Elevated Non-oxidative Metabolism of Glucose Across Childhood. Front Neurosci 12:631 |
Thompson, Garth J; Sanganahalli, Basavaraju G; Baker, Keeley L et al. (2018) Spontaneous activity forms a foundation for odor-evoked activation maps in the rat olfactory bulb. Neuroimage 172:586-596 |
Yu, Yuguo; Herman, Peter; Rothman, Douglas L et al. (2018) Evaluating the gray and white matter energy budgets of human brain function. J Cereb Blood Flow Metab 38:1339-1353 |
Johnson, Matthew B; Sun, Xingshen; Kodani, Andrew et al. (2018) Aspm knockout ferret reveals an evolutionary mechanism governing cerebral cortical size. Nature 556:370-375 |
Johnson, Frances K; Delpech, Jean-Christophe; Thompson, Garth J et al. (2018) Amygdala hyper-connectivity in a mouse model of unpredictable early life stress. Transl Psychiatry 8:49 |
Mortensen, Kristian N; Gjedde, Albert; Thompson, Garth J et al. (2018) Impact of Global Mean Normalization on Regional Glucose Metabolism in the Human Brain. Neural Plast 2018:6120925 |
Thompson, Garth J (2018) Neural and metabolic basis of dynamic resting state fMRI. Neuroimage 180:448-462 |
Juchem, Christoph; de Graaf, Robin A (2017) The public multi-coil information (PUMCIN) policy. Magn Reson Med 78:2042-2047 |
Hyder, Fahmeed; Rothman, Douglas L (2017) Advances in Imaging Brain Metabolism. Annu Rev Biomed Eng 19:485-515 |
Wang, Helen; Huang, Yuegao; Coman, Daniel et al. (2017) Network evolution in mesial temporal lobe epilepsy revealed by diffusion tensor imaging. Epilepsia 58:824-834 |
Showing the most recent 10 out of 149 publications