Especially since the introduction of functional magnetic resonance imaging (fMRI), a plethora of magnetic resonance (MR) techniques, such as neurochemical spectroscopy, perfusion imaging, imaging of vascular anatomy, diffusion imaging and functional imaging etc., have come to play an indispensable role in neurosciences. Furthermore, many of these methodologies, even at ultrahigh fields such as 7 Tesla, are rapidly moving from the domain of technique development carried out by MR physicist to become an indispensable tool employed routinely by a community of neuroscience researchers without expertise in MR physics. Contemporary use of such MR methodologies in neuroscience research requires immense auxiliary support that includes complex animal surgery, invasive infusions in humans and animal model studies, large scale data and image processing, and complementary non-MR measurements (e.g. electrophysiology, optical imaging, histology etc.).
The aim of this proposal is to establish Neuroscience CORE facilities that will augment the existing state-of-the art and unique MR instrumentation resources located in the Center for Magnetic Resonance Research (CMRR) at the University of Minnesota, so as to enable access and utilization of CMRR,A6s resources by a large community of neuroscience researchers, and maximize the impact of modern MR techniques in neuroscience discovery.
Showing the most recent 10 out of 253 publications