The general aim of this proposal is to establish NINDS Institutional Center Core facilities that will augment the unique resources that exist at the Center for Magnetic Resonance Research (CMRR), University of Minnesota, for biomedical imaging, so as to maximize their utilization and impact on a large number of NINDS funded research projects on normal brain function and neurological disorders.
This aim i s based on the premise that developments in the last two decades have generated a plethora of magnetic resonance (MR) techniques, such as functional brain imaging (fMRI), neurochemical spectroscopy, perfusion imaging, diffusion imaging etc., that provide indispensable and otherwise unavailable measurement capabilities for studies of the brain in humans and in animal models of human diseased states. However, optimal use of these techniques requires advanced instrumentation, unique expertise, and complex auxiliary capabilities that include complementary measurements employing classical techniques (e.g. electrophysiology, and histology) and other imaging modalities such as PET. Access to these instrumentation and methodologies, especially at the cutting-edge, is virtually impossible in individual labs and requires interdisciplinary interactions in the area of spin-physics, RF engineering, signal and image processing, and brain sciences.
The aim of this grant is to provide this access within the cooperative, multidisciplinary, and interactive research environment of CMRR, so as to enrich the effectiveness of and promote new research directions in a large number of ongoing NINDS funded research projects.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Center Core Grants (P30)
Project #
1P30NS076408-01A1
Application #
8452942
Study Section
Special Emphasis Panel (ZNS1-SRB-R (59))
Program Officer
Talley, Edmund M
Project Start
2012-09-30
Project End
2017-06-30
Budget Start
2012-09-30
Budget End
2013-06-30
Support Year
1
Fiscal Year
2012
Total Cost
$544,992
Indirect Cost
$165,918
Name
University of Minnesota Twin Cities
Department
Radiation-Diagnostic/Oncology
Type
Schools of Medicine
DUNS #
555917996
City
Minneapolis
State
MN
Country
United States
Zip Code
55455
U?urbil, Kamil (2018) Imaging at ultrahigh magnetic fields: History, challenges, and solutions. Neuroimage 168:7-32
Peña, Edgar; Zhang, Simeng; Patriat, Remi et al. (2018) Multi-objective particle swarm optimization for postoperative deep brain stimulation targeting of subthalamic nucleus pathways. J Neural Eng 15:066020
Wu, Xiaoping; Auerbach, Edward J; Vu, An T et al. (2018) High-resolution whole-brain diffusion MRI at 7T using radiofrequency parallel transmission. Magn Reson Med 80:1857-1870
Moerel, Michelle; De Martino, Federico; U?urbil, Kâmil et al. (2018) Evaluating the Columnar Stability of Acoustic Processing in the Human Auditory Cortex. J Neurosci 38:7822-7832
Adanyeguh, Isaac M; Perlbarg, Vincent; Henry, Pierre-Gilles et al. (2018) Autosomal dominant cerebellar ataxias: Imaging biomarkers with high effect sizes. Neuroimage Clin 19:858-867
Zhu, Xiao-Hong; Lu, Ming; Chen, Wei (2018) Quantitative imaging of brain energy metabolisms and neuroenergetics using in vivo X-nuclear 2H, 17O and 31P MRS at ultra-high field. J Magn Reson 292:155-170
Zhang, Simeng; Connolly, Allison T; Madden, Lauren R et al. (2018) High-resolution local field potentials measured with deep brain stimulation arrays. J Neural Eng 15:046019
Deelchand, Dinesh K; Auerbach, Edward J; Marja?ska, Ma?gorzata (2018) Apparent diffusion coefficients of the five major metabolites measured in the human brain in vivo at 3T. Magn Reson Med 79:2896-2901
Moerel, Michelle; De Martino, Federico; Kemper, Valentin G et al. (2018) Sensitivity and specificity considerations for fMRI encoding, decoding, and mapping of auditory cortex at ultra-high field. Neuroimage 164:18-31
Plantinga, Birgit R; Temel, Yasin; Duchin, Yuval et al. (2018) Individualized parcellation of the subthalamic nucleus in patients with Parkinson's disease with 7T MRI. Neuroimage 168:403-411

Showing the most recent 10 out of 177 publications