The analysis and visualization of high field magnetic resonance imaging (MRI) and spectroscopy (MRS) data require cutting-edge computational resources and expertise, because of their increasing size and complexity. Although these advances will undoubtedly improve our understanding of brain development, aging and disorders, it can also be a significant barrier for investigators. Therefore, the overall goal of this core is to provide unique and easily accessible processing resources for human and animal neuroimaging research, which will empower researchers to efficiently produce state-of-the-art results, and generate high-quality images from CMRR's high and ultrahigh field MR scanners.
Aim 1 : To provide MRI data reconstruction and pre-processing expertise and tools, including parallel imaging, artifacts and distortion correction.
Aim 2 : To provide expertise and computational resources for MRI data analysis, including registration, segmentation, diffusion models fitting (tensor, crossing fibers models, microstructure), tractography, and fMRI statistical analysis.
Aim 3 : To provide quantitative imaging analysis capabilities, including generating quantitative brain maps of relaxation times.
Aim 4 : To provide processing and metabolite quantification capabilities for MRS.
Aim 5 : To provide data storage, organization and visualization capabilities.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Center Core Grants (P30)
Project #
2P30NS076408-06
Application #
9432739
Study Section
Special Emphasis Panel (ZNS1)
Project Start
Project End
Budget Start
2017-09-01
Budget End
2018-08-31
Support Year
6
Fiscal Year
2017
Total Cost
Indirect Cost
Name
University of Minnesota Twin Cities
Department
Type
DUNS #
555917996
City
Minneapolis
State
MN
Country
United States
Zip Code
55455
U?urbil, Kamil (2018) Imaging at ultrahigh magnetic fields: History, challenges, and solutions. Neuroimage 168:7-32
Peña, Edgar; Zhang, Simeng; Patriat, Remi et al. (2018) Multi-objective particle swarm optimization for postoperative deep brain stimulation targeting of subthalamic nucleus pathways. J Neural Eng 15:066020
Wu, Xiaoping; Auerbach, Edward J; Vu, An T et al. (2018) High-resolution whole-brain diffusion MRI at 7T using radiofrequency parallel transmission. Magn Reson Med 80:1857-1870
Moerel, Michelle; De Martino, Federico; U?urbil, Kâmil et al. (2018) Evaluating the Columnar Stability of Acoustic Processing in the Human Auditory Cortex. J Neurosci 38:7822-7832
Adanyeguh, Isaac M; Perlbarg, Vincent; Henry, Pierre-Gilles et al. (2018) Autosomal dominant cerebellar ataxias: Imaging biomarkers with high effect sizes. Neuroimage Clin 19:858-867
Zhu, Xiao-Hong; Lu, Ming; Chen, Wei (2018) Quantitative imaging of brain energy metabolisms and neuroenergetics using in vivo X-nuclear 2H, 17O and 31P MRS at ultra-high field. J Magn Reson 292:155-170
Zhang, Simeng; Connolly, Allison T; Madden, Lauren R et al. (2018) High-resolution local field potentials measured with deep brain stimulation arrays. J Neural Eng 15:046019
Deelchand, Dinesh K; Auerbach, Edward J; Marja?ska, Ma?gorzata (2018) Apparent diffusion coefficients of the five major metabolites measured in the human brain in vivo at 3T. Magn Reson Med 79:2896-2901
Moerel, Michelle; De Martino, Federico; Kemper, Valentin G et al. (2018) Sensitivity and specificity considerations for fMRI encoding, decoding, and mapping of auditory cortex at ultra-high field. Neuroimage 164:18-31
Plantinga, Birgit R; Temel, Yasin; Duchin, Yuval et al. (2018) Individualized parcellation of the subthalamic nucleus in patients with Parkinson's disease with 7T MRI. Neuroimage 168:403-411

Showing the most recent 10 out of 177 publications