The Caenorhabditis Genetics Center (CGC) is the sole comprehensive repository and distribution center for the nematode Caenorhabditis elegans, a premier model organism for biomedical research studies. The overall objective of this animal resource is to promote research on C. elegans by acquiring, maintaining, and distributing genetically characterized nematode stocks. Researchers throughout the world use genetic stocks obtained from the CGC in diverse basic and applied research endeavors, as well as for hand-on teaching of experimental science. Studies using this premier model organism have led to fundamental insights into basic biological mechanisms, including the genetic basis of programmed cell death, the discovery of microRNAs, and the mechanism of RNA interference in animals. The nematode has also proved important for understanding mechanisms of cancer progression and other diseases including Alzheimer's and Parkinson's, as well as for revealing basic mechanisms underlying human development. In addition, C. elegans serves as a key model for illuminating our understanding of parasitic nematodes with relevance to human and livestock health. As the only general stock center for C. elegans, the CGC is an extremely important international research resource, supporting research in these diverse areas and educational endeavors. The CGC provides more than 30,000 strains are distributed per year to thousands of laboratories; with a collection of over 19,000 unique strains, still expanding in proportion to the growth of the field, the CGC not only facilitates research, but also ensures that valuable strains are preserved. The CGC distributes strains upon request through an on-line ordering system. A scheme of user fees helps to defray costs and support CGC activities. The CGC also includes a research component aimed at enhancing the CGC collection. Our close monitoring of user needs, ties with the C. elegans community, and focus on genetic tools has given us a unique perspective in devising a research component.
Two aims will be pursued, one focused on expanding the genetic tool-kit by generating intrachromosomal inversions for use as crossover suppressors. The other aim is to complete the collection of null mutations in microRNA genes.

Public Health Relevance

?Overall The Caenorhabditis Genetics Center (CGC) is the sole general international repository and distribution center for the nematode C. elegans. Researchers throughout the world make important discoveries in diverse areas of biology, many with relevance to human health, aging and disease, using this premier model organism and strains provided by the CGC. A small research component is designed to enhance the collection of C. elegans mutants and genetic tools available to the research community.

Agency
National Institute of Health (NIH)
Institute
Office of The Director, National Institutes of Health (OD)
Type
Animal (Mammalian and Nonmammalian) Model, and Animal and Biological Material Resource Grants (P40)
Project #
2P40OD010440-06
Application #
9278648
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Zou, Sige
Project Start
2012-09-01
Project End
2022-02-28
Budget Start
2017-06-01
Budget End
2018-02-28
Support Year
6
Fiscal Year
2017
Total Cost
Indirect Cost
Name
University of Minnesota Twin Cities
Department
Genetics
Type
Schools of Medicine
DUNS #
555917996
City
Minneapolis
State
MN
Country
United States
Zip Code
55455
Rahman, Mizanur; Hewitt, Jennifer E; Van-Bussel, Frank et al. (2018) NemaFlex: a microfluidics-based technology for standardized measurement of muscular strength of C. elegans. Lab Chip 18:2187-2201
Sarasija, Shaarika; Norman, Kenneth R (2018) Measurement of ROS in Caenorhabditis elegans Using a Reduced Form of Fluorescein. Bio Protoc 8:
Heestand, Bree; Simon, Matt; Frenk, Stephen et al. (2018) Transgenerational Sterility of Piwi Mutants Represents a Dynamic Form of Adult Reproductive Diapause. Cell Rep 23:156-171
Wang, Han; Park, Heenam; Liu, Jonathan et al. (2018) An Efficient Genome Editing Strategy To Generate Putative Null Mutants in Caenorhabditis elegans Using CRISPR/Cas9. G3 (Bethesda) 8:3607-3616
Raiders, Stephan A; Eastwood, Michael D; Bacher, Meghan et al. (2018) Binucleate germ cells in Caenorhabditis elegans are removed by physiological apoptosis. PLoS Genet 14:e1007417
Seth, Meetu; Shirayama, Masaki; Tang, Wen et al. (2018) The Coding Regions of Germline mRNAs Confer Sensitivity to Argonaute Regulation in C. elegans. Cell Rep 22:2254-2264
Kaplan, Rebecca E W; Webster, Amy K; Chitrakar, Rojin et al. (2018) Food perception without ingestion leads to metabolic changes and irreversible developmental arrest in C. elegans. BMC Biol 16:112
Kow, Rebecca L; Sikkema, Carl; Wheeler, Jeanna M et al. (2018) DOPA Decarboxylase Modulates Tau Toxicity. Biol Psychiatry 83:438-446
Risley, Monica G; Kelly, Stephanie P; Minnerly, Justin et al. (2018) egl-4 modulates electroconvulsive seizure duration in C. elegans. Invert Neurosci 18:8
Na, Huimin; Ponomarova, Olga; Giese, Gabrielle E et al. (2018) C. elegans MRP-5 Exports Vitamin B12 from Mother to Offspring to Support Embryonic Development. Cell Rep 22:3126-3133

Showing the most recent 10 out of 1478 publications