? Core Component This component outlines the various resources available to the community at the National Xenopus Resource (NXR) and a detailed progress report of the previous five years. We outline the infrastructure of the facility, describing the two main rooms housing X. laevis and X. tropicalis as well as the new room that was renovated in 2017. We provide a summary of the maintenance, breeding and distribution of frogs to the community. In the second aim we summarize the various resources and services available to the community, including cryopreserved sperm and the custom transgenesis and mutant resources that serve to enhance research using Xenopus through facilitating the creation of new frog lines that is often an impediment in the community because of the inability of individual labs to breed lines in their own institution. In the third aim, we describe how the NXR enhances novel Xenopus research through its offering of advanced training workshops, hosting of PI meetings and its research facility service. All of these aspects are made possible by the various facilities available at the Marine Biological Laboratory, including teaching labs, imaging core and on-site housing.

Project Start
Project End
Budget Start
2020-05-01
Budget End
2021-04-30
Support Year
11
Fiscal Year
2020
Total Cost
Indirect Cost
Name
Marine Biological Laboratory
Department
Type
DUNS #
001933779
City
Woods Hole
State
MA
Country
United States
Zip Code
02543
Steimle, Jeffrey D; Rankin, Scott A; Slagle, Christopher E et al. (2018) Evolutionarily conserved Tbx5-Wnt2/2b pathway orchestrates cardiopulmonary development. Proc Natl Acad Sci U S A 115:E10615-E10624
DeLay, Bridget D; Corkins, Mark E; Hanania, Hannah L et al. (2018) Tissue-Specific Gene Inactivation in Xenopus laevis: Knockout of lhx1 in the Kidney with CRISPR/Cas9. Genetics 208:673-686
Pearl, Esther; Morrow, Sean; Noble, Anna et al. (2017) An optimized method for cryogenic storage of Xenopus sperm to maximise the effectiveness of research using genetically altered frogs. Theriogenology 92:149-155
Ratzan, Wil; Falco, Rosalia; Salanga, Cristy et al. (2017) Generation of a Xenopus laevis F1 albino J strain by genome editing and oocyte host-transfer. Dev Biol 426:188-193
Savova, Virginia; Pearl, Esther J; Boke, Elvan et al. (2017) Transcriptomic insights into genetic diversity of protein-coding genes in X. laevis. Dev Biol 424:181-188
Webb, Bryn D; Metikala, Sanjeeva; Wheeler, Patricia G et al. (2017) Heterozygous Pathogenic Variant in DACT1 Causes an Autosomal-Dominant Syndrome with Features Overlapping Townes-Brocks Syndrome. Hum Mutat 38:373-377
Tandon, Panna; Conlon, Frank; Furlow, J David et al. (2017) Expanding the genetic toolkit in Xenopus: Approaches and opportunities for human disease modeling. Dev Biol 426:325-335
Wlizla, Marcin; Falco, Rosalia; Peshkin, Leonid et al. (2017) Luteinizing Hormone is an effective replacement for hCG to induce ovulation in Xenopus. Dev Biol 426:442-448
Sedzinski, Jakub; Hannezo, Edouard; Tu, Fan et al. (2016) Emergence of an Apical Epithelial Cell Surface In Vivo. Dev Cell 36:24-35
Vukovi?, Lidija D; Jevti?, Predrag; Zhang, Zhaojie et al. (2016) Nuclear size is sensitive to NTF2 protein levels in a manner dependent on Ran binding. J Cell Sci 129:1115-27

Showing the most recent 10 out of 41 publications