? Project Component The Project Component outlines the applied research of the National Xenopus Resource (NXR). Transgenic lines are the single largest component of the NXR. These lines are essential for individual labs and their sales are increasing each year. In recent years, it has been shown that in most mouse transgenic lines there are genomic alterations in and around the integration sites of transgenes. These changes can influence the expression of endogenous genes or even cause mutations in these genes. Therefore, it is essential that we define the integration sites for our transgenic lines. In this Component we outline the steps we will take to identify the integration sites for five of our transgenic lines.

Project Start
Project End
Budget Start
2020-05-01
Budget End
2021-04-30
Support Year
11
Fiscal Year
2020
Total Cost
Indirect Cost
Name
Marine Biological Laboratory
Department
Type
DUNS #
001933779
City
Woods Hole
State
MA
Country
United States
Zip Code
02543
Steimle, Jeffrey D; Rankin, Scott A; Slagle, Christopher E et al. (2018) Evolutionarily conserved Tbx5-Wnt2/2b pathway orchestrates cardiopulmonary development. Proc Natl Acad Sci U S A 115:E10615-E10624
DeLay, Bridget D; Corkins, Mark E; Hanania, Hannah L et al. (2018) Tissue-Specific Gene Inactivation in Xenopus laevis: Knockout of lhx1 in the Kidney with CRISPR/Cas9. Genetics 208:673-686
Ratzan, Wil; Falco, Rosalia; Salanga, Cristy et al. (2017) Generation of a Xenopus laevis F1 albino J strain by genome editing and oocyte host-transfer. Dev Biol 426:188-193
Savova, Virginia; Pearl, Esther J; Boke, Elvan et al. (2017) Transcriptomic insights into genetic diversity of protein-coding genes in X. laevis. Dev Biol 424:181-188
Webb, Bryn D; Metikala, Sanjeeva; Wheeler, Patricia G et al. (2017) Heterozygous Pathogenic Variant in DACT1 Causes an Autosomal-Dominant Syndrome with Features Overlapping Townes-Brocks Syndrome. Hum Mutat 38:373-377
Tandon, Panna; Conlon, Frank; Furlow, J David et al. (2017) Expanding the genetic toolkit in Xenopus: Approaches and opportunities for human disease modeling. Dev Biol 426:325-335
Wlizla, Marcin; Falco, Rosalia; Peshkin, Leonid et al. (2017) Luteinizing Hormone is an effective replacement for hCG to induce ovulation in Xenopus. Dev Biol 426:442-448
Pearl, Esther; Morrow, Sean; Noble, Anna et al. (2017) An optimized method for cryogenic storage of Xenopus sperm to maximise the effectiveness of research using genetically altered frogs. Theriogenology 92:149-155
Sedzinski, Jakub; Hannezo, Edouard; Tu, Fan et al. (2016) Emergence of an Apical Epithelial Cell Surface In Vivo. Dev Cell 36:24-35
Vukovi?, Lidija D; Jevti?, Predrag; Zhang, Zhaojie et al. (2016) Nuclear size is sensitive to NTF2 protein levels in a manner dependent on Ran binding. J Cell Sci 129:1115-27

Showing the most recent 10 out of 41 publications