The overall goal of this P41 center is to disseminate optimal new hyperpolarized (HP) 13C MR technologies with optimal training/documentation to advance significantly this emerging molecular imaging method. Through our HP MR studies to date, it has become clear both that hyperpolarized 13C MR has outstanding research and clinical value, but also that virtually all aspects of this technology (instrumentation, agent chemistry, DNP/dissolution methodology, MR acquisition, and data analysis) are currently suboptimal and require focused technological development to realize their full potential. This center includes three Technology Research & Development (TR&D) projects led by experienced hyperpolarized MR researchers. All TR&D developments are driven in a push-pull manner by 10 independently NIH-funded Collaborative Projects (CP's) and the technology resources of the center will be utilized by 8 Service Projects (SP's) and disseminated to all interested investigators through hands-on workshops, visits, email, and via the HMTRC website. TR&D1, led by the PI Dr. Vigneron, is focused on DNP polarizer and MR acquisition development for pre-clinical animal studies and their translation for future human studies. TR&D2 led by Dr. Kurhanewicz focuses on the development of new robust and realistic pre-clinical models for HP MR studies, optimization of current HP probes & investigation of new HP probes, and the development of methods that provide appropriate correlative pathologic, biologic and other imaging data for understanding and validating HP MR findings. TR&D3 led by Dr. Nelson focuses on enhancing a free open-source specialized software platform for HP MR data reconstruction and visualization. In its first four years, the HMTRC has developed new polarization, MR acquisition, bioreactor, and analysis techniques driven by close interactions with the CP projects resulting in 70 publications and over 150 conference presentations. This BTRC has also spawned/supports currently more than 15 NIH grants including new ones for all 10 proposed CP's. Guided by an exceptional EAC, the HMTRC has created an extensive infrastructure that extends nationally and internationally to support the SP's and other collaborators, a new website, highly successful hands-on workshops, and other focused training and dissemination activities. Since the submission of the current P41, the first Phase 1 clinical trial in prostate cancer patients was conducted and demonstrated safety and feasibility of this emerging molecular imaging technique. Now, four of the Collaborative Projects include future human studies. Therefore we are modifying the structure and goals of the center to not only advance preclinical HP MR, but also to include new technology development, administrative infrastructure, training and dissemination to support and advance future human studies at UCSF and other institutions.
Hyperpolarized MR is a new molecular imaging method to monitor enzymatic conversions through key, previously-inaccessible biochemical pathways. Therefore this center project aims to collaboratively develop new technology to advance this field in order to better identify and understand human disease and ultimately to translate and disseminate these techniques for improved patient care.
Showing the most recent 10 out of 129 publications