National Center for In Vivo Metabolism (EB015908) This application proposes to renew a Biomedical Technology Research Centers (BTRC) focused on the use of stable isotopes to probe metabolism in human patients. The BTRC is motivated by the strong current interest in disruptions of intermediary metabolism in high impact conditions such as nonalcoholic fatty liver disease, cancer, congestive heart failure, diabetes and others. Although we have considerable knowledge from animal and cell models about metabolic pathways, little of this information can be used for clinical research and direct patient care because the information yield from traditional metabolic studies such as PET is so poor. Stable isotopes with detection of metabolic products by NMR are attractive because of the inherently rich information content of these exams which is far superior to alternatives. The poor inherent sensitivity of NMR is the critical obstacle to clinical translation. One solution is analysis of tissue biopsies and blood samples in high resolution analytical systems, an approach pioneered in this BTRC. Another solution is imaging and spectroscopy of hyperpolarized nuclei. There are a number of major opportunities to help translation of this technology to the clinic, including better 15N and 13C probes, improved software for simulation and data analysis, improved integration of NMR and mass spectrometry data, implementation of hyperpolarization exams in human patients, and validation of hyperpolarization results. We propose coordinated development of technologies focused on in vivo exams. Three technology research and development projects are planned, all driven by specific needs of our collaborative users. In TR&D 1, we will develop new probes tailored for 15N and 13C hyperpolarization and provide the infrastructure to understand the biological value of these probes. In TR&D 2, we will develop integrated methods for combining data from mass spectrometry and NMR spectroscopy exams, with the purpose of probing metabolism in small, biopsy- sized tissue samples. TR&D 3 will focus on in vivo applications of 13C NMR and creation of an infrastructure for hyperpolarization studies in human patients. The capacity to investigate imaging and spectroscopy of hyperpolarized nuclei is limited to a small handful of centers in the nation. The ability to integrate conventional analytical NMR and mass spectrometry methods with hyperpolarization exams is even less accessible. This program will leverage extraordinary institutional support for space, equipment and personnel in a combined basic research and clinical environment. This diverse user group, including the physicians, share one commonality in having a long track record of metabolic studies using conventional NMR and mass spectrometry for examining metabolism. The Center will retain its exclusive focus on metabolism and continue efforts in training young scientists.

Public Health Relevance

National Center for In Vivo Metabolism (EB015908) All high-impact diseases are associated with abnormal fluxes in biochemical pathways. We have a great deal of knowledge about metabolism in disease, based on animal and cell experiments, yet little of that information can actually be used in management of an individual patient because of limitations in technology. Our purpose is to provide personalized metabolic exams in patients. The methods offer significant advantages compared to current studies: superior information about biochemical pathways, absence of ionizing radiation, and simple integration with standard imaging methods.

Agency
National Institute of Health (NIH)
Institute
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Type
Biotechnology Resource Grants (P41)
Project #
5P41EB015908-32
Application #
9850588
Study Section
Special Emphasis Panel (ZEB1)
Program Officer
Atanasijevic, Tatjana
Project Start
1997-09-01
Project End
2021-12-31
Budget Start
2020-01-01
Budget End
2020-12-31
Support Year
32
Fiscal Year
2020
Total Cost
Indirect Cost
Name
University of Texas Sw Medical Center Dallas
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
800771545
City
Dallas
State
TX
Country
United States
Zip Code
75390
Sirusi, Ali A; Suh, Eul Hyun; Kovacs, Zoltan et al. (2018) The effect of Ho3+ doping on 13C dynamic nuclear polarization at 5 T. Phys Chem Chem Phys 20:728-731
Courtney, Kevin D; Bezwada, Divya; Mashimo, Tomoyuki et al. (2018) Isotope Tracing of Human Clear Cell Renal Cell Carcinomas Demonstrates Suppressed Glucose Oxidation In Vivo. Cell Metab 28:793-800.e2
Potts, Austin; Uchida, Aki; Deja, Stanislaw et al. (2018) Cytosolic phosphoenolpyruvate carboxykinase as a cataplerotic pathway in the small intestine. Am J Physiol Gastrointest Liver Physiol 315:G249-G258
Wu, Cheng-Yang; Tso, Shih-Chia; Chuang, Jacinta L et al. (2018) Targeting hepatic pyruvate dehydrogenase kinases restores insulin signaling and mitigates ChREBP-mediated lipogenesis in diet-induced obese mice. Mol Metab 12:12-24
Jin, Eunsook S; Browning, Jeffrey D; Murphy, Rebecca E et al. (2018) Fatty liver disrupts glycerol metabolism in gluconeogenic and lipogenic pathways in humans. J Lipid Res 59:1685-1694
Makarewich, Catherine A; Baskin, Kedryn K; Munir, Amir Z et al. (2018) MOXI Is a Mitochondrial Micropeptide That Enhances Fatty Acid ?-Oxidation. Cell Rep 23:3701-3709
Lux, Jacques; Sherry, A Dean (2018) Advances in gadolinium-based MRI contrast agent designs for monitoring biological processes in vivo. Curr Opin Chem Biol 45:121-130
Kaushik, Akash K; DeBerardinis, Ralph J (2018) Applications of metabolomics to study cancer metabolism. Biochim Biophys Acta Rev Cancer 1870:2-14
Chiu, Tsuicheng D; Arai, Tatsuya J; Campbell Iii, James et al. (2018) MR-CBCT image-guided system for radiotherapy of orthotopic rat prostate tumors. PLoS One 13:e0198065
Xie, Fang; Cai, Huawei; Peng, Fangyu (2018) Anti-prostate cancer activity of 8-hydroxyquinoline-2-carboxaldehyde-thiosemicarbazide copper complexes in vivo by bioluminescence imaging. J Biol Inorg Chem :

Showing the most recent 10 out of 149 publications