The participants in the Biomedical Technology Resource Center are dedicated to provide training in advanced brain imaging and image analysis and basic MRI and MRS principles, brain physiology, and all other aspects of the application of magnetic resonance technologies to the study of brain function and brain physiology. This includes 1) training of internal collaborators, postdoctoral fellows and students; 2) Internal training at the resource by labmembers of external collaborators or users; 3) Training of external collaborators through site visits; 4) Training through web and email communications; 5) Training of external collaborators through conferences, workshops and local lectures. The Investigators of the Resource are also committed to the prompt and widespread dissemination of research results and technological improvements. Dissemination involves (A) publication of peer-reviewed papers in scientific journals, books, book chapters, and special issues of journals; (B) maintaining a Resource website; (C) transferring technologies to industry; (D) distributing software; (E) providing databases. For the final 5 years of the BTRC we intend to continue our successful training and dissemination efforts in the way described above and, in addition, expand upon them using newly available technologies such as the web- based cloud.

Agency
National Institute of Health (NIH)
Institute
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Type
Biotechnology Resource Grants (P41)
Project #
5P41EB015909-19
Application #
9741488
Study Section
Special Emphasis Panel (ZEB1)
Project Start
Project End
Budget Start
2019-07-01
Budget End
2020-06-30
Support Year
19
Fiscal Year
2019
Total Cost
Indirect Cost
Name
Hugo W. Moser Research Institute Kennedy Krieger
Department
Type
DUNS #
155342439
City
Baltimore
State
MD
Country
United States
Zip Code
21205
Wijtenburg, S Andrea; Rowland, Laura M; Oeltzschner, Georg et al. (2018) Reproducibility of brain MRS in older healthy adults at 7T. NMR Biomed :e4040
Hou, Xirui; Liu, Peiying; Gu, Hong et al. (2018) Estimation of brain functional connectivity from hypercapnia BOLD MRI data: Validation in a lifespan cohort of 170 subjects. Neuroimage 186:455-463
van Bergen, J M G; Li, X; Quevenco, F C et al. (2018) Simultaneous quantitative susceptibility mapping and Flutemetamol-PET suggests local correlation of iron and ?-amyloid as an indicator of cognitive performance at high age. Neuroimage 174:308-316
Jiang, Dengrong; Liu, Peiying; Li, Yang et al. (2018) Cross-vendor harmonization of T2 -relaxation-under-spin-tagging (TRUST) MRI for the assessment of cerebral venous oxygenation. Magn Reson Med 80:1125-1131
Mohamed, M; Barker, P B; Skolasky, R L et al. (2018) 7T Brain MRS in HIV Infection: Correlation with Cognitive Impairment and Performance on Neuropsychological Tests. AJNR Am J Neuroradiol 39:704-712
Xu, Feng; Li, Wenbo; Liu, Peiying et al. (2018) Accounting for the role of hematocrit in between-subject variations of MRI-derived baseline cerebral hemodynamic parameters and functional BOLD responses. Hum Brain Mapp 39:344-353
van Bergen, Jiri M G; Li, Xu; Quevenco, Frances C et al. (2018) Low cortical iron and high entorhinal cortex volume promote cognitive functioning in the oldest-old. Neurobiol Aging 64:68-75
van Zijl, Peter C M; Lam, Wilfred W; Xu, Jiadi et al. (2018) Magnetization Transfer Contrast and Chemical Exchange Saturation Transfer MRI. Features and analysis of the field-dependent saturation spectrum. Neuroimage 168:222-241
Gong, Tao; Xiang, Yuanyuan; Saleh, Muhammad G et al. (2018) Inhibitory motor dysfunction in parkinson's disease subtypes. J Magn Reson Imaging 47:1610-1615
Stivaros, Stavros; Garg, Shruti; Tziraki, Maria et al. (2018) Randomised controlled trial of simvastatin treatment for autism in young children with neurofibromatosis type 1 (SANTA). Mol Autism 9:12

Showing the most recent 10 out of 450 publications