Technology Research and Development Project #2 Radiofrequency Field Interactions with Tissue: New Tools for RF Design, Safety, and Control TR&D #2 Principal Investigators: Christopher M. Collins, PhD and Graham C. Wiggins, D Phil The broad mission of our Center for Advanced Imaging Innovation and Research (CAI2R) is to bring together collaborative translational research teams for the development of high-impact biomedical imaging technologies, with the ultimate goal of changing day-to-day clinical practice. Technology Research and Development (TR&D) project #2 envisions new and improved uses for radiofrequency (RF) fields, providing new tools for RF design, safety and control in MRI, and expanding the reach of the rapid continuous acquisition approach developed in TR&D #1 to high-performance high-field applications.
Specific aims are as follows: (1) RF Design: Develop novel RF detectors and transmitters together with tools for rational RF coil design and evaluation (2) RF Safety: Develop novel techniques for monitoring and prediction of RF energy deposition (3) RF Control: Develop tools for practical parallel RF transmission and clinical ultra-high-field MRI

Agency
National Institute of Health (NIH)
Institute
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Type
Biotechnology Resource Grants (P41)
Project #
1P41EB017183-01A1
Application #
8794074
Study Section
Special Emphasis Panel (ZEB1-OSR-E (O1))
Project Start
Project End
Budget Start
2014-09-30
Budget End
2015-07-31
Support Year
1
Fiscal Year
2014
Total Cost
$550,194
Indirect Cost
$98,532
Name
New York University
Department
Type
DUNS #
121911077
City
New York
State
NY
Country
United States
Zip Code
10016
Feng, Li; Coppo, Simone; Piccini, Davide et al. (2018) 5D whole-heart sparse MRI. Magn Reson Med 79:826-838
Benkert, Thomas; Tian, Ye; Huang, Chenchan et al. (2018) Optimization and validation of accelerated golden-angle radial sparse MRI reconstruction with self-calibrating GRAPPA operator gridding. Magn Reson Med 80:286-293
Wake, Nicole; Chandarana, Hersh; Rusinek, Henry et al. (2018) Accuracy and precision of quantitative DCE-MRI parameters: How should one estimate contrast concentration? Magn Reson Imaging 52:16-23
Lee, Hong-Hsi; Sodickson, Daniel K; Lattanzi, Riccardo (2018) An analytic expression for the ultimate intrinsic SNR in a uniform sphere. Magn Reson Med 80:2256-2266
Lattanzi, Riccardo; Zhang, Bei; Knoll, Florian et al. (2018) Phase unwinding for dictionary compression with multiple channel transmission in magnetic resonance fingerprinting. Magn Reson Imaging 49:32-38
Madelin, Guillaume; Xia, Ding; Brown, Ryan et al. (2018) Longitudinal study of sodium MRI of articular cartilage in patients with knee osteoarthritis: initial experience with 16-month follow-up. Eur Radiol 28:133-142
Sbrizzi, Alessandro; Heide, Oscar van der; Cloos, Martijn et al. (2018) Fast quantitative MRI as a nonlinear tomography problem. Magn Reson Imaging 46:56-63
Lakshmanan, Karthik; Brown, Ryan; Madelin, Guillaume et al. (2018) An eight-channel sodium/proton coil for brain MRI at 3 T. NMR Biomed 31:
Winters, Kerryanne V; Reynaud, Olivier; Novikov, Dmitry S et al. (2018) Quantifying myofiber integrity using diffusion MRI and random permeable barrier modeling in skeletal muscle growth and Duchenne muscular dystrophy model in mice. Magn Reson Med 80:2094-2108
Hammernik, Kerstin; Klatzer, Teresa; Kobler, Erich et al. (2018) Learning a variational network for reconstruction of accelerated MRI data. Magn Reson Med 79:3055-3071

Showing the most recent 10 out of 168 publications