2. TRD#1: New Approaches to Specimen Preparation Abstract We are developing novel methods for specimen preparation that provide several advantages over traditional methods. These advantages include consumption of very small amounts of sample, and providing for more control over the quality of the prepared grids. The system uses a robotic device, called Spotiton, to dispense drops with volumes on the order of nanoliters to precise locations on an EM grid. The success of the device is coupled to a new ?self-blotting? grid that we have developed to provide a method for spreading sample to a thin film without the use of externally applied filter paper. Over the next 5 years we will design, develop, test and validate a generalized Spotiton system capable of multiple tasks including making well controlled vitrified grids, managing time resolved and fast mixing experiments, and preparing ~100 independent negatively stained samples on a single grid. We anticipate that a version of this device will be manufactured by a commercial company so that it becomes generally available to the research community.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Biotechnology Resource Grants (P41)
Project #
5P41GM103310-18
Application #
9494588
Study Section
Special Emphasis Panel (ZRG1)
Project Start
Project End
Budget Start
2018-04-01
Budget End
2019-03-31
Support Year
18
Fiscal Year
2018
Total Cost
Indirect Cost
Name
New York Structural Biology Center
Department
Type
DUNS #
011191520
City
New York
State
NY
Country
United States
Zip Code
10027
Sun, Chang; Benlekbir, Samir; Venkatakrishnan, Padmaja et al. (2018) Structure of the alternative complex III in a supercomplex with cytochrome oxidase. Nature 557:123-126
Cao, Shengya; Zhou, Keda; Zhang, Zhening et al. (2018) Constitutive centromere-associated network contacts confer differential stability on CENP-A nucleosomes in vitro and in the cell. Mol Biol Cell 29:751-762
Wang, Longfei; Fu, Tian-Min; Zhou, Yiming et al. (2018) Structures and gating mechanism of human TRPM2. Science 362:
Noble, Alex J; Wei, Hui; Dandey, Venkata P et al. (2018) Reducing effects of particle adsorption to the air-water interface in cryo-EM. Nat Methods 15:793-795
Li, Yunlong; Sharma, Manjuli R; Koripella, Ravi K et al. (2018) Zinc depletion induces ribosome hibernation in mycobacteria. Proc Natl Acad Sci U S A 115:8191-8196
McGoldrick, Luke L; Singh, Appu K; Saotome, Kei et al. (2018) Opening of the human epithelial calcium channel TRPV6. Nature 553:233-237
Oliveira, Lucas M; Ye, Ze; Katz, Al et al. (2018) Component tree analysis of cystovirus ?6 nucleocapsid Cryo-EM single particle reconstructions. PLoS One 13:e0188858
Rheinberger, Jan; Gao, Xiaolong; Schmidpeter, Philipp Am et al. (2018) Ligand discrimination and gating in cyclic nucleotide-gated ion channels from apo and partial agonist-bound cryo-EM structures. Elife 7:
Singh, Appu K; McGoldrick, Luke L; Sobolevsky, Alexander I (2018) Structure and gating mechanism of the transient receptor potential channel TRPV3. Nat Struct Mol Biol 25:805-813
Kang, Jin Young; Mooney, Rachel Anne; Nedialkov, Yuri et al. (2018) Structural Basis for Transcript Elongation Control by NusG Family Universal Regulators. Cell 173:1650-1662.e14

Showing the most recent 10 out of 159 publications