Glycosaminoglycans (GAGs), such as heparin, heparan sulfate (HS), and chondroitin sulfate (CS), are naturally occurring polydisperse linear polysaccharides that are heavily O- and N-sulfated. The interaction between GAGs and proteins are critical for many biological processes including cell-cell and cell-matrix interactions, cell migration and proliferation, growth factor sequestration, chemokine and cytokine activation, microbial recognition and tissue morphogenesis during embryonic development. Hundreds of HS-binding proteins have been identified, but the oligosaccharide structures that mediate particular interactions have been defined in only a few cases due to the structural complexity of HS. The objective of the Training component of the Resource is to train scientist from outside the CCRC in cutting edge technologies developed by Resource investigators and to ensure that these methods are transferred to the scientific community. The most effective method to expose the outside investigators to our technologies is through hands-on training. Since 1990, the CCRC and this resource have offered hands-on training courses to scientists from other institutions that wish to learn analytical methods in complex carbohydrate science. Over the years, we have built a strong infrastructure for training the next generation of glycobiologists in the most update methods of glycoconjugate analysis.
The aims of the Training component are: (1) Hands-on Training - we will offer four formal annual hands-on training courses in (i.) Separation and Characterization of Glycoprotein and Glycolipid Oligosaccharides, (ii.) Techniques for Characterization of Carbohydrate Structure of Polysaccharide, (iii.) Analytical Techniques for Structural Characterization of Proteoglycans, (iv.) Mass Spectrometry of Glycoproteins. The third course (Analytical Techniques for Structural Characterization of Proteoglycans) is particularly dedicated to technologies that are developed in this resource. However, all other hands-on courses have components of methods tools being developed incorporated in them such as the NMR, molecular modeling, MS modules. (2) Incorporation of New Technologies - Part of the success of the hands-on training has been due to implementing the new technologies derived from the TR&Ds into the laboratory experiments and protocols. We continually strive to improve our workshops by adding newly developed techniques and methods. Plans are underway to expand Course III with an online LC-ESI-MS experiment using the new LTQ-Fusion with its various fragmentation capabilities and use the new Capillary Electrophoresis in the service laboratory to design an experiment for separation of negatively charged GAG oligomers by CE for this training course.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Biotechnology Resource Grants (P41)
Project #
5P41GM103390-28
Application #
9222766
Study Section
Special Emphasis Panel (ZRG1-IMST-J)
Project Start
Project End
Budget Start
2017-02-01
Budget End
2018-01-31
Support Year
28
Fiscal Year
2017
Total Cost
$17,010
Indirect Cost
$5,670
Name
University of Georgia
Department
Type
Domestic Higher Education
DUNS #
004315578
City
Athens
State
GA
Country
United States
Zip Code
30602
Moremen, Kelley W; Ramiah, Annapoorani; Stuart, Melissa et al. (2018) Expression system for structural and functional studies of human glycosylation enzymes. Nat Chem Biol 14:156-162
Agyekum, Isaac; Pepi, Lauren; Yu, Yanlei et al. (2018) Structural elucidation of fucosylated chondroitin sulfates from sea cucumber using FTICR-MS/MS. Eur J Mass Spectrom (Chichester) 24:157-167
Nemanichvili, Nikoloz; Tomris, Ilhan; Turner, Hannah L et al. (2018) Fluorescent Trimeric Hemagglutinins Reveal Multivalent Receptor Binding Properties. J Mol Biol :
Yu, Seok-Ho; Zhao, Peng; Prabhakar, Pradeep K et al. (2018) Defective mucin-type glycosylation on ?-dystroglycan in COG-deficient cells increases its susceptibility to bacterial proteases. J Biol Chem 293:14534-14544
Qiu, Hong; Shi, Songshan; Yue, Jingwen et al. (2018) A mutant-cell library for systematic analysis of heparan sulfate structure-function relationships. Nat Methods 15:889-899
Liang, Quntao; Chopra, Pradeep; Boons, Geert-Jan et al. (2018) Improved de novo sequencing of heparin/heparan sulfate oligosaccharides by propionylation of sites of sulfation. Carbohydr Res 465:16-21
Li, Qianjin; Alsaidan, Omar A; Rai, Sumit et al. (2018) Stromal Gli signaling regulates the activity and differentiation of prostate stem and progenitor cells. J Biol Chem 293:10547-10560
Wu, Zhengliang L; Person, Anthony D; Anderson, Matthew et al. (2018) Imaging specific cellular glycan structures using glycosyltransferases via click chemistry. Glycobiology 28:69-79
Ferreira, Roux-Cil; Grant, Oliver C; Moyo, Thandeka et al. (2018) Structural Rearrangements Maintain the Glycan Shield of an HIV-1 Envelope Trimer After the Loss of a Glycan. Sci Rep 8:15031
Chen, Hao; Ambadapadi, Sriram; Wakefield, Dara et al. (2018) Selective Deletion of Heparan Sulfotransferase Enzyme, Ndst1, in Donor Endothelial and Myeloid Precursor Cells Significantly Decreases Acute Allograft Rejection. Sci Rep 8:13433

Showing the most recent 10 out of 246 publications