Synchrotron radiation (SR) is an extremely bright and tunable x-ray source that enables forefront research in structural molecular biology (SMB). A ?Synchrotron Structural Biology Resource is proposed for continuing support at the Stanford Synchrotron Radiation Lightsource (SSRL) by the NIH NIGMS and DOE BER to develop new technologies in macromolecular crystallography, x-ray absorption/emission spectroscopy and small angle x-ray scattering/diffraction, to train/support users, and to disseminate the newly developed capabilities to the biomedical research community. This proposal is for the continued funding, operation and future development of this SMB Resource. New initiatives will capitalize on the increasing SR performance of SSRL?s 3rd generation storage ring SPEAR3. Proposed also is the development of selected SMB applications of LCLS. A principal aim is to optimize experimental facilities and instrumentation, detectors, software and compute performance on the SMB Resource?s 9+ beam lines at SSRL (with another two in construction) to take full advantage of the high brightness provided by SPEAR3 at 500 mA current and provide innovative new instrumentation and methodologies. This will enable the SMB Resource to advance the scientific forefront with new initiatives built upon state-of-the-art instrumentation and methodologies, innovative software and automated/high-throughput systems for: studying high resolution structures/function of large, complex biomolecules and molecular machines; investigating fundamental questions in biophysics such as protein folding; and developing/improving methods for studying very fast time-resolved structural changes in chemical and biological systems with ultrafast or fast scattering and spectroscopy techniques. These scientific advancements will be facilitated by parallel developments in software to provide expanded capabilities for instrument and detector control, remote data collection and real-time data analysis. Driving biomedical projects and collaborative research and service programs involving a large number of outside scientists will drive and support core technological developments.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Biotechnology Resource Grants (P41)
Project #
5P41GM103393-40
Application #
9647477
Study Section
Special Emphasis Panel (ZRG1)
Project Start
Project End
2021-02-28
Budget Start
2019-03-01
Budget End
2020-02-29
Support Year
40
Fiscal Year
2019
Total Cost
Indirect Cost
Name
Stanford University
Department
Type
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305
Magherusan, Adriana M; Zhou, Ang; Farquhar, Erik R et al. (2018) Mimicking Class?I?b Mn2 -Ribonucleotide Reductase: A MnII2 Complex and Its Reaction with Superoxide. Angew Chem Int Ed Engl 57:918-922
Glasser, Nathaniel R; Oyala, Paul H; Osborne, Thomas H et al. (2018) Structural and mechanistic analysis of the arsenate respiratory reductase provides insight into environmental arsenic transformations. Proc Natl Acad Sci U S A 115:E8614-E8623
Kroll, Thomas; Weninger, Clemens; Alonso-Mori, Roberto et al. (2018) Stimulated X-Ray Emission Spectroscopy in Transition Metal Complexes. Phys Rev Lett 120:133203
Samuels, Eric R; Sevrioukova, Irina (2018) Inhibition of Human CYP3A4 by Rationally Designed Ritonavir-Like Compounds: Impact and Interplay of the Side Group Functionalities. Mol Pharm 15:279-288
West, Brandyn R; Moyer, Crystal L; King, Liam B et al. (2018) Structural Basis of Pan-Ebolavirus Neutralization by a Human Antibody against a Conserved, yet Cryptic Epitope. MBio 9:
Yoshizawa, Takuya; Ali, Rustam; Jiou, Jenny et al. (2018) Nuclear Import Receptor Inhibits Phase Separation of FUS through Binding to Multiple Sites. Cell 173:693-705.e22
King, Liam B; Fusco, Marnie L; Flyak, Andrew I et al. (2018) The Marburgvirus-Neutralizing Human Monoclonal Antibody MR191 Targets a Conserved Site to Block Virus Receptor Binding. Cell Host Microbe 23:101-109.e4
Nicholl, Iain D; Matsui, Tsutomu; Weiss, Thomas M et al. (2018) ?-Catenin Structure and Nanoscale Dynamics in Solution and in Complex with F-Actin. Biophys J 115:642-654
Chen, Siming; Jiao, Lianying; Shubbar, Murtada et al. (2018) Unique Structural Platforms of Suz12 Dictate Distinct Classes of PRC2 for Chromatin Binding. Mol Cell 69:840-852.e5
Kintzer, Alexander F; Stroud, Robert M (2018) On the structure and mechanism of two-pore channels. FEBS J 285:233-243

Showing the most recent 10 out of 686 publications