Through Dissemination Core activities, the Washington University (WU) Biomedical Mass Spectrometry (MS) Resource achieves the fundamental goal of sharing, distributing, providing access and technical support for MS technology and software with the broad research community. The Dissemination Core will accomplish this goal by sharing, distributing, and hosting many broad outreach programs focused on MS and related technologies developed in the Resource, including: an informative website with tutorials and distance learning modules; peer-reviewed publications, reviews, books and special editions of technical journals; press releases; conference, symposia, seminar, and workshop presentations; software; and instruments, technology, and methods shared directly with other laboratories and industry.

Public Health Relevance

-Public Health Relevance. The Washington University Biomedical Mass Spectrometry Resource has a longstanding history as an active and productive citizen in the NIH Biotechnology Research Resources community. We propose to extend our mission by advancing mass spectrometry technology, development, and research, applying these discoveries to answer critical biomedical research questions, and training the next generation of researchers, towards the ultimate goal of improving public health.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Biotechnology Resource Grants (P41)
Project #
5P41GM103422-42
Application #
9618637
Study Section
Special Emphasis Panel (ZRG1)
Project Start
Project End
2020-12-31
Budget Start
2019-01-01
Budget End
2019-12-31
Support Year
42
Fiscal Year
2019
Total Cost
Indirect Cost
Name
Washington University
Department
Type
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Rajagopal, Rithwick; Zhang, Sheng; Wei, Xiaochao et al. (2018) Retinal de novo lipogenesis coordinates neurotrophic signaling to maintain vision. JCI Insight 3:
van Vliet, Stephan; Smith, Gordon I; Porter, Lane et al. (2018) The muscle anabolic effect of protein ingestion during a hyperinsulinaemic euglycaemic clamp in middle-aged women is not caused by leucine alone. J Physiol 596:4681-4692
Keul, Nicholas D; Oruganty, Krishnadev; Schaper Bergman, Elizabeth T et al. (2018) The entropic force generated by intrinsically disordered segments tunes protein function. Nature 563:584-588
Goldner, Nicholas K; Bulow, Christopher; Cho, Kevin et al. (2018) Mechanism of High-Level Daptomycin Resistance in Corynebacterium striatum. mSphere 3:
Zhang, Bojie; Cheng, Ming; Rempel, Don et al. (2018) Implementing fast photochemical oxidation of proteins (FPOP) as a footprinting approach to solve diverse problems in structural biology. Methods 144:94-103
Su, Zhaoming; Wu, Chao; Shi, Liuqing et al. (2018) Electron Cryo-microscopy Structure of Ebola Virus Nucleoprotein Reveals a Mechanism for Nucleocapsid-like Assembly. Cell 172:966-978.e12
Zhang, Mengru Mira; Rempel, Don L; Gross, Michael L (2018) A Fast Photochemical Oxidation of Proteins (FPOP) platform for free-radical reactions: the carbonate radical anion with peptides and proteins. Free Radic Biol Med 131:126-132
Shen, G; Li, S; Cui, W et al. (2018) Stabilization of warfarin-binding pocket of VKORC1 and VKORL1 by a peripheral region determines their different sensitivity to warfarin inhibition. J Thromb Haemost 16:1164-1175
Lu, Yue; Goodson, Carrie; Blankenship, Robert E et al. (2018) Primary and Higher Order Structure of the Reaction Center from the Purple Phototrophic Bacterium Blastochloris viridis: A Test for Native Mass Spectrometry. J Proteome Res 17:1615-1623
Fernandez, Estefania; Kose, Nurgun; Edeling, Melissa A et al. (2018) Mouse and Human Monoclonal Antibodies Protect against Infection by Multiple Genotypes of Japanese Encephalitis Virus. MBio 9:

Showing the most recent 10 out of 323 publications