Proteomics is dependent on the collection of tandem mass spectra of peptides and proteins to make identifications in database searches. Large-scale proteome analyses have become more comprehensive as instrument scan speeds have increased and ion dissociation methods have improved. Additionally, protein quantitation benefits from the creation of internal standards and data collection methods to acquire sufficient data for accurate quantification. The YRC invented small window data independent acquisition (DIA) for proteomics more than a decade ago and we have innovated and improved these methods. To improve the comprehensiveness and reproducibility of peptide identification and quantitation, DIA methods will be advanced for bottom-up proteomics. Reagents will be developed for general enrichment of peptides for targeted quantitation of peptides. To determine proteoforms of proteins in complexes, strategies employing capillary electrophoresis to separate intact proteins for top down analysis using new DIA data collection strategies coupled to emerging ion dissociation methods for intact proteins will be developed. To advance multiplexed quantitation of peptides in bottom up proteomics and to multiplex ?molecular painting? new reagents will be developed.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Biotechnology Resource Grants (P41)
Project #
2P41GM103533-21
Application #
9208072
Study Section
Special Emphasis Panel (ZRG1)
Project Start
1997-09-30
Project End
2022-03-31
Budget Start
2017-01-01
Budget End
2017-12-31
Support Year
21
Fiscal Year
2017
Total Cost
Indirect Cost
Name
University of Washington
Department
Biochemistry
Type
Schools of Medicine
DUNS #
605799469
City
Seattle
State
WA
Country
United States
Zip Code
98195
Helgeson, Luke A; Zelter, Alex; Riffle, Michael et al. (2018) Human Ska complex and Ndc80 complex interact to form a load-bearing assembly that strengthens kinetochore-microtubule attachments. Proc Natl Acad Sci U S A 115:2740-2745
Fong, Kimberly K; Zelter, Alex; Graczyk, Beth et al. (2018) Novel phosphorylation states of the yeast spindle pole body. Biol Open 7:
González, Delfina P; Lamb, Helen V; Partida, Diana et al. (2018) CBD-1 organizes two independent complexes required for eggshell vitelline layer formation and egg activation in C. elegans. Dev Biol 442:288-300
Basisty, Nathan B; Liu, Yuxin; Reynolds, Jason et al. (2018) Stable Isotope Labeling Reveals Novel Insights Into Ubiquitin-Mediated Protein Aggregation With Age, Calorie Restriction, and Rapamycin Treatment. J Gerontol A Biol Sci Med Sci 73:561-570
Brandsen, Benjamin M; Mattheisen, Jordan M; Noel, Teia et al. (2018) A Biosensor Strategy for E. coli Based on Ligand-Dependent Stabilization. ACS Synth Biol 7:1990-1999
Ma, Yuanhui; Yates 3rd, John R (2018) Proteomics and pulse azidohomoalanine labeling of newly synthesized proteins: what are the potential applications? Expert Rev Proteomics 15:545-554
Tseng, Boo Shan; Reichhardt, Courtney; Merrihew, Gennifer E et al. (2018) A Biofilm Matrix-Associated Protease Inhibitor Protects Pseudomonas aeruginosa from Proteolytic Attack. MBio 9:
Yates 3rd, John R (2018) Content Is King: Databases Preserve the Collective Information of Science. J Biomol Tech 29:1-3
DaRosa, Paul A; Harrison, Joseph S; Zelter, Alex et al. (2018) A Bifunctional Role for the UHRF1 UBL Domain in the Control of Hemi-methylated DNA-Dependent Histone Ubiquitylation. Mol Cell 72:753-765.e6
Xu, Yi; Ju, Ho-Jong; DeBlasio, Stacy et al. (2018) A Stem-Loop Structure in Potato Leafroll Virus Open Reading Frame 5 (ORF5) Is Essential for Readthrough Translation of the Coat Protein ORF Stop Codon 700 Bases Upstream. J Virol 92:

Showing the most recent 10 out of 372 publications