POCl3 is a major commercial phosphorylating agent used to synthesize numerous products including biologicals. It has been long recognized that the addition of water to POCl3 dramatically changes its phosphorylating properties although the identity of the active reagent so generated remains uncertain. We have developed a new method for studying the hydrolysis products of PCl5 or POCl3 generated in situ, using limited hydrolysis in 18-O water, followed by complete hydrolysis in normal water. These studies have provided information on the mechanism and kinetics of the in situ hydrolysis process and also revealed the presence of phosphorochloridic acid, H2PO3CL, a hitherto undetected hydrolytic intermediate and a likely candidate as the active phosphorylating reagent in partial hydrolysis mixtures.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
3P41RR000480-28S1
Application #
6258842
Study Section
Project Start
1997-06-01
Project End
1999-11-30
Budget Start
1998-10-01
Budget End
1999-09-30
Support Year
28
Fiscal Year
1999
Total Cost
Indirect Cost
Name
Michigan State University
Department
Type
DUNS #
193247145
City
East Lansing
State
MI
Country
United States
Zip Code
48824
Peri, S P; Bhadti, V S; Somerville-Armstrong, K S et al. (1999) Affinity reagents for cross-linking hemoglobin: bis(phenoxycarbonylethyl)phosphinic acid (BPCEP) and bis(3-nitrophenoxycarbonylethyl)phosphinic acid (BNCEP). Hemoglobin 23:1-20
Chen, H M; Sood, R; Hosmane, R S (1999) An efficient, short synthesis and potent anti-hepatitis B viral activity of a novel ring-expanded purine nucleoside analogue containing a 5:7-fused, planar, aromatic, imidazo[4,5-e][1,3]diazepine ring system. Nucleosides Nucleotides 18:331-5
Bretner, M; Beckett, T D; Sood, R K et al. (1999) Substrate/inhibition studies of bacteriophage T7 RNA polymerase with the 5'-triphosphate derivative of a ring-expanded ('fat') nucleoside possessing potent antiviral and anticancer activities. Bioorg Med Chem 7:2931-6
Agasimundin, Y S; Mumper, M W; Hosmane, R S (1998) Inhibitors of glycogen phosphorylase b: synthesis, biochemical screening, and molecular modeling studies of novel analogues of hydantocidin. Bioorg Med Chem 6:911-23
Hosmane, R S; Peri, S P; Bhadti, V S et al. (1998) Bis[2-(4-carboxyphenoxy)carbonylethyl]phosphinic acid (BCCEP): a novel affinity reagent for the beta-cleft modification of human hemoglobin. Bioorg Med Chem 6:767-83
Rajappan, V P; Hosmane, R S (1998) Analogues of azepinomycin as inhibitors of guanase. Nucleosides Nucleotides 17:1141-51
Hosmane, R S; Hong, M (1997) How important is the N-3 sugar moiety in the tight-binding interaction of coformycin with adenosine deaminase? Biochem Biophys Res Commun 236:88-93
Lopez-Lara, I M; Orgambide, G; Dazzo, F B et al. (1993) Characterization and symbiotic importance of acidic extracellular polysaccharides of Rhizobium sp. strain GRH2 isolated from acacia nodules. J Bacteriol 175:2826-32
Watson, J T; Kayganich, K (1989) Novel sample preparation for analysis by electron capture negative ionization mass spectrometry. Biochem Soc Trans 17:254-7
Kassel, D B; Kayganich, K A; Watson, J T et al. (1988) Utility of ion source pretreatment with chlorine-containing compounds for enhanced performance in gas chromatography/negative ionization mass spectrometry. Anal Chem 60:911-7

Showing the most recent 10 out of 11 publications