We are exploring the potential applications of multiphoton imaging for biological or clinical research. Multiphoton imaging offers two significant advantages over confocal imaging: reduced total photobleaching (and hence phototoxicity) and increased depth of penetration within a specimen. We have developed a multiphoton system that features a compact, all-solid-state laser. The system also has an environmental chamber to facilitate studies of live specimens. Two lasers are utilized to provide comparisons between confocal imaging (one-photon excitation) and two and thr-ee-photon excitation images. The first laser is a standard argon ion laser which delivers 5 mwatts average power at 488 mn into the scanner. The second laser is an infrared, short-pulse (120fsec), solid-state laser manufactured by Microlase, Ltd. which produces a mean power of 480 mwatts at 1047 nm. The laser scanning system is based on a BioRad MRC 600 confocal system and is coupled to a Nikon Diaphot Quantum inverted microscope. Two detection options are available. The emission signal may be directed back into the scanhead and detected by the internal PMTs. Descanning the emission provides the option of introducing the """"""""pinhole"""""""" into the imaging pathway when deemed necessary to trim the resolution. Otherwise, the emission signal can be passed directly through the """"""""Keller"""""""" hole to a PNff mounted below the microscope. By detecting the emission directly, we have gained approximately 17 times more signal detection than descanning.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
3P41RR000570-28
Application #
6278462
Study Section
Project Start
1998-07-01
Project End
2000-06-30
Budget Start
1997-10-01
Budget End
1998-09-30
Support Year
28
Fiscal Year
1998
Total Cost
Indirect Cost
Name
University of Wisconsin Madison
Department
Type
DUNS #
161202122
City
Madison
State
WI
Country
United States
Zip Code
53715
Malecki, Marek; Putzer, Emily; Sabo, Chelsea et al. (2014) Directed cardiomyogenesis of autologous human induced pluripotent stem cells recruited to infarcted myocardium with bioengineered antibodies. Mol Cell Ther 2:
Malecki, Marek (2014) 'Above all, do no harm': safeguarding pluripotent stem cell therapy against iatrogenic tumorigenesis. Stem Cell Res Ther 5:73
Mavroudi, Maria; Zarogoulidis, Paul; Porpodis, Konstantinos et al. (2014) Stem cells' guided gene therapy of cancer: New frontier in personalized and targeted therapy. J Cancer Res Ther (Manch) 2:22-33
Malecki, Marek; LaVanne, Christine; Alhambra, Dominique et al. (2013) Safeguarding Stem Cell-Based Regenerative Therapy against Iatrogenic Cancerogenesis: Transgenic Expression of DNASE1, DNASE1L3, DNASE2, DFFB Controlled By POLA1 Promoter in Proliferating and Directed Differentiation Resisting Human Autologous Pluripotent J Stem Cell Res Ther Suppl 9:
Malecki, Marek; Tombokan, Xenia; Anderson, Mark et al. (2013) TRA-1-60(+), SSEA-4(+), POU5F1(+), SOX2(+), NANOG(+) Clones of Pluripotent Stem Cells in the Embryonal Carcinomas of the Testes. J Stem Cell Res Ther 3:
Malecki, Marek (2013) Improved targeting and enhanced retention of the human, autologous, fibroblast-derived, induced, pluripotent stem cells to the sarcomeres of the infarcted myocardium with the aid of the bioengineered, heterospecific, tetravalent antibodies. J Stem Cell Res Ther 3:
Malecki, Marek; Dahlke, Jessica; Haig, Melissa et al. (2013) Eradication of Human Ovarian Cancer Cells by Transgenic Expression of Recombinant DNASE1, DNASE1L3, DNASE2, and DFFB Controlled by EGFR Promoter: Novel Strategy for Targeted Therapy of Cancer. J Genet Syndr Gene Ther 4:152
Zarogoulidis, Paul; Darwiche, Kaid; Sakkas, Antonios et al. (2013) Suicide Gene Therapy for Cancer - Current Strategies. J Genet Syndr Gene Ther 4:
Malecki, Marek; Sabo, Chelsea; Putzer, Emily et al. (2013) Recruitment and retention of human autologous CD34+ CD117+ CD133+ bone marrow stem cells to infarcted myocardium followed by directed vasculogenesis: Novel strategy for cardiac regeneration. Mol Cell Ther 1:
Malecki, Marek; Malecki, Bianca (2012) Routing of Biomolecules and Transgenes' Vectors in Nuclei of Oocytes. J Fertili In Vitro 2012:108-118

Showing the most recent 10 out of 24 publications