This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Our research is focused on molecular and supramolecular structures that facilitate communication between neurons at the chemical synapse and how such structures are perturbed in neurological disease. We are particularly interested in the architectural arrangement of signaling molecules and enzymes, and characterizing the ways in which such molecular assemblies are formed and undergo changes during synaptic transmission and modulation. Our approach is to investigate individual proteins using x-ray and electron crystallographic methods and to combine this information with EM images obtained via 3-D reconstruction of supramolecular assemblies and tomographic analysis of the intact chemical synapse. Our long-term goal is to construct a dynamic molecular and architectural map for the chemical synapse that will help to understand synaptic formation, transmission and plasticity. Using electron tomographic methods we have begun to study the architecture of the chemical synapse in cultured neurons. Our first goal is to establish the common architectural elements present at the synapse and to identify the molecules involved using specific antibody labeling or genetic tagging. Subsequently, we will perform field potential stimulations coupled with cryogenic trapping to investigate the dynamic processes involved in synaptic transmission. Ultimately we plan to study long-term, stimulation dependent, synaptic changes in the hopes of gaining insight into the architectural elements underlying synaptic plasticity. FUNDING

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR000592-40
Application #
8170846
Study Section
Special Emphasis Panel (ZRG1-CB-J (40))
Project Start
2010-05-01
Project End
2011-04-30
Budget Start
2010-05-01
Budget End
2011-04-30
Support Year
40
Fiscal Year
2010
Total Cost
$37,352
Indirect Cost
Name
University of Colorado at Boulder
Department
Biochemistry
Type
Schools of Arts and Sciences
DUNS #
007431505
City
Boulder
State
CO
Country
United States
Zip Code
80309
Giddings Jr, Thomas H; Morphew, Mary K; McIntosh, J Richard (2017) Preparing Fission Yeast for Electron Microscopy. Cold Spring Harb Protoc 2017:
Zhao, Xiaowei; Schwartz, Cindi L; Pierson, Jason et al. (2017) Three-Dimensional Structure of the Ultraoligotrophic Marine Bacterium ""Candidatus Pelagibacter ubique"". Appl Environ Microbiol 83:
Brown, Joanna R; Schwartz, Cindi L; Heumann, John M et al. (2016) A detailed look at the cytoskeletal architecture of the Giardia lamblia ventral disc. J Struct Biol 194:38-48
Saheki, Yasunori; Bian, Xin; Schauder, Curtis M et al. (2016) Control of plasma membrane lipid homeostasis by the extended synaptotagmins. Nat Cell Biol 18:504-15
Höög, Johanna L; Lacomble, Sylvain; Bouchet-Marquis, Cedric et al. (2016) 3D Architecture of the Trypanosoma brucei Flagella Connector, a Mobile Transmembrane Junction. PLoS Negl Trop Dis 10:e0004312
Park, J Genevieve; Palmer, Amy E (2015) Properties and use of genetically encoded FRET sensors for cytosolic and organellar Ca2+ measurements. Cold Spring Harb Protoc 2015:pdb.top066043
McCoy, Kelsey M; Tubman, Emily S; Claas, Allison et al. (2015) Physical limits on kinesin-5-mediated chromosome congression in the smallest mitotic spindles. Mol Biol Cell 26:3999-4014
Höög, Johanna L; Lötvall, Jan (2015) Diversity of extracellular vesicles in human ejaculates revealed by cryo-electron microscopy. J Extracell Vesicles 4:28680
Marc, Robert E; Anderson, James R; Jones, Bryan W et al. (2014) The AII amacrine cell connectome: a dense network hub. Front Neural Circuits 8:104
Weber, Britta; Tranfield, Erin M; Höög, Johanna L et al. (2014) Automated stitching of microtubule centerlines across serial electron tomograms. PLoS One 9:e113222

Showing the most recent 10 out of 84 publications