This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. We have developed a strategy that combines an instrumentation and software approach to measure the average molecular mass of proteins with accuracies of approximately 10ppm. The strategy consists of (1) producing an envelope of multiply charged protein ions avoiding space-charge effects, (2) calibrating the spectrum externally with an envelope of multiply charge ions from another protein (a calibrant), then (3) deconvoluting the ion envelope into a single mass peak centered at the average mass distribution of the protein being measured. The deconvolution software was written in our laboratory and has been presented at one of the conferences of the American Society for Mass Spectrometry and Allied Topics. A manuscript describing this approach is being prepared.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR000862-33
Application #
7355142
Study Section
Special Emphasis Panel (ZRG1-BNP (01))
Project Start
2006-03-01
Project End
2007-02-28
Budget Start
2006-03-01
Budget End
2007-02-28
Support Year
33
Fiscal Year
2006
Total Cost
$3,700
Indirect Cost
Name
Rockefeller University
Department
Miscellaneous
Type
Other Domestic Higher Education
DUNS #
071037113
City
New York
State
NY
Country
United States
Zip Code
10065
Manning, Lois R; Popowicz, Anthony M; Padovan, Julio C et al. (2017) Gel filtration of dilute human embryonic hemoglobins reveals basis for their increased oxygen binding. Anal Biochem 519:38-41
Boice, Michael; Salloum, Darin; Mourcin, Frederic et al. (2016) Loss of the HVEM Tumor Suppressor in Lymphoma and Restoration by Modified CAR-T Cells. Cell 167:405-418.e13
Chait, Brian T; Cadene, Martine; Olinares, Paul Dominic et al. (2016) Revealing Higher Order Protein Structure Using Mass Spectrometry. J Am Soc Mass Spectrom 27:952-65
Krutchinsky, Andrew N; Padovan, Júlio C; Cohen, Herbert et al. (2015) Maximizing ion transmission from atmospheric pressure into the vacuum of mass spectrometers with a novel electrospray interface. J Am Soc Mass Spectrom 26:649-58
Mast, Fred D; Rachubinski, Richard A; Aitchison, John D (2015) Signaling dynamics and peroxisomes. Curr Opin Cell Biol 35:131-6
Krutchinsky, Andrew N; Padovan, Júlio C; Cohen, Herbert et al. (2015) Optimizing electrospray interfaces using slowly diverging conical duct (ConDuct) electrodes. J Am Soc Mass Spectrom 26:659-67
Oricchio, Elisa; Papapetrou, Eirini P; Lafaille, Fabien et al. (2014) A cell engineering strategy to enhance the safety of stem cell therapies. Cell Rep 8:1677-1685
Zhong, Yu; Morris, Deanna H; Jin, Lin et al. (2014) Nrbf2 protein suppresses autophagy by modulating Atg14L protein-containing Beclin 1-Vps34 complex architecture and reducing intracellular phosphatidylinositol-3 phosphate levels. J Biol Chem 289:26021-37
Mathur, Aabhas; Blais, Steven; Goparaju, Chandra M V et al. (2013) Development of a biosensor for detection of pleural mesothelioma cancer biomarker using surface imprinting. PLoS One 8:e57681
Peterson, Shaun E; Li, Yinyin; Wu-Baer, Foon et al. (2013) Activation of DSB processing requires phosphorylation of CtIP by ATR. Mol Cell 49:657-67

Showing the most recent 10 out of 67 publications