This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. This project is following a former lab member Derek McLachlin?s collaboration with Yong Kim from Dr. Greengard's lab. p35 is a cyclin-dependent kinase 5 (Cdk5) activator. Cdk5/p35 complex phosphorylates diverse substrates which have multifunctional roles in the nervous system. During development, it participates in neuronal differentiation, migration, axon outgrowth and synaptogenesis. P35 was found autophosphorylated in vitro, which may indicate a mechanism of functional regulation in vivo. We set out to identify the p35 phosphorylation sites as an initial step towards studying its function. P35 were over-expressed and purified from insect cells and phosphorylated with cdk5 and 32P-ATP in vitro. Protein was tryptic digested and peptides was separated by HPLC, phosphopeptide were identified by MALDI-TOF followed by tandem MS/MS, as well as HMMS (hypothesis-driven multi-stage MS). Six phosphopeptides were identified which correspondent to two phosphorylation sites. Site directed mutagenesis and 2D peptide map of the tryptic digest of P35 were used to confirm the identified sites. We are currently focusing on identifying an additional phosphorylation site shown by the phospho-image of the 2D map from tryptic digest of phosphorylated wild type p35.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR000862-38
Application #
8361501
Study Section
Special Emphasis Panel (ZRG1-BCMB-Q (40))
Project Start
2011-03-01
Project End
2012-03-31
Budget Start
2011-03-01
Budget End
2012-03-31
Support Year
38
Fiscal Year
2011
Total Cost
$1,304
Indirect Cost
Name
Rockefeller University
Department
Miscellaneous
Type
Other Domestic Higher Education
DUNS #
071037113
City
New York
State
NY
Country
United States
Zip Code
10065
Manning, Lois R; Popowicz, Anthony M; Padovan, Julio C et al. (2017) Gel filtration of dilute human embryonic hemoglobins reveals basis for their increased oxygen binding. Anal Biochem 519:38-41
Boice, Michael; Salloum, Darin; Mourcin, Frederic et al. (2016) Loss of the HVEM Tumor Suppressor in Lymphoma and Restoration by Modified CAR-T Cells. Cell 167:405-418.e13
Chait, Brian T; Cadene, Martine; Olinares, Paul Dominic et al. (2016) Revealing Higher Order Protein Structure Using Mass Spectrometry. J Am Soc Mass Spectrom 27:952-65
Krutchinsky, Andrew N; Padovan, Júlio C; Cohen, Herbert et al. (2015) Maximizing ion transmission from atmospheric pressure into the vacuum of mass spectrometers with a novel electrospray interface. J Am Soc Mass Spectrom 26:649-58
Mast, Fred D; Rachubinski, Richard A; Aitchison, John D (2015) Signaling dynamics and peroxisomes. Curr Opin Cell Biol 35:131-6
Krutchinsky, Andrew N; Padovan, Júlio C; Cohen, Herbert et al. (2015) Optimizing electrospray interfaces using slowly diverging conical duct (ConDuct) electrodes. J Am Soc Mass Spectrom 26:659-67
Oricchio, Elisa; Papapetrou, Eirini P; Lafaille, Fabien et al. (2014) A cell engineering strategy to enhance the safety of stem cell therapies. Cell Rep 8:1677-1685
Zhong, Yu; Morris, Deanna H; Jin, Lin et al. (2014) Nrbf2 protein suppresses autophagy by modulating Atg14L protein-containing Beclin 1-Vps34 complex architecture and reducing intracellular phosphatidylinositol-3 phosphate levels. J Biol Chem 289:26021-37
Xue, John Z; Woo, Eileen M; Postow, Lisa et al. (2013) Chromatin-bound Xenopus Dppa2 shapes the nucleus by locally inhibiting microtubule assembly. Dev Cell 27:47-59
Indiani, Chiara; O'Donnell, Mike (2013) A proposal: Source of single strand DNA that elicits the SOS response. Front Biosci (Landmark Ed) 18:312-23

Showing the most recent 10 out of 67 publications